Login to MoboReader
icon 0
icon TOP UP
rightIcon
icon Reading History
rightIcon
icon Log out
rightIcon
icon Get the APP
rightIcon
Scientific American Supplement, No. 455, September 20, 1884

Scientific American Supplement, No. 455, September 20, 1884

Various

5.0
Comment(s)
2
View
3
Chapters

Scientific American Supplement, No. 455, September 20, 1884 by Various

Chapter 1 Normal intensity of the discharge current. 25 amperes.

i. Intensity of the charge current. 5 to 10 amperes.

Q. Capacity of accumulation after 200 hours' formation. 550,000 couples.

DATA CONCERNING CONSTRUCTION.

Efficient surface of the 4 positive electrodes. 200 square dec.

Efficient surface of the 3 negative electrodes. 15 square dec.

Weight of the positive electrodes. 8.2 kilogrammes.

Weight of the negative electrodes. 1.4 kilogrammes.

Weight of the trough. 2.7 kilogrammes.

Weight of the liquid. 4.4 kilogrammes.

Weight of the attachments. 0.46 kilogrammes.

Weight, total. 17.16 kilogrammes.

The total electric work stored up is 130,000 kilogrammeters, or 7,600 kilogrammeters per kilogramme of accumulator. Theory indicates that a zinc accumulator might store up as much as 15,600 kilogrammeters per kilogramme. If the present model gives half less, it is because I have purposely exaggerated the solidity of the trough and the mass of the electrodes.

It should be remarked that this capacity of 7,600 kilogrammeters per kilogramme is much greater than that of any other accumulator constructed in France. The new model possesses, then, despite the size of the positives and the box, a relative lightness that will permit it to take a place upon electric locomotives as well as in fixed installations.

Independently of their use as accumulators, secondary zinc batteries may be utilized as regulating voltameters in lighting by incandescence, for deadening piston strokes, attenuating the irregularities in speed, and covering accidental stoppages.-E. Reynier, in La Nature.

* * *

THE HISTORY OF A LIGHTNING FLASH.

By W. SLINGO.

Lately we have all felt, I doubt not, a considerable amount of interest in the various phenomena attending this summer's unusually heavy thunderstorms, accompanied, as they have been, by vivid lightning discharges of a more or less hurtful nature. The list of disasters published in Knowledge, No. 143, might be very materially augmented were we to record such damage as has been wrought since that list was compiled.

There is not, I suppose, in the mind of any intelligent man at the present day a doubt as to the electrical origin of a lightning flash. The questions to be considered are rather whence comes the electricity, and in what way is the thunderstorm brought about. In attempting to answer these questions, sight must not be lost of the fact that the very nature of electricity is in itself almost sufficient to baffle any effort put forth to ascertain from lightning, as such, its whence and its whither.

It is possible, however, with the aid of our knowledge of static electricity, to arrive at hypotheses of a more than chimerical nature. In the first place, that our sphere is a more or less electrified body is generally admitted. More than this, it is demonstrated that the different parts of the earth's surface and its enveloping atmosphere are variously charged. As a consequence of these varying charges, there is a constant series of currents flowing through the various parts of the earth, which show themselves in such telegraph wires as may lie in the direction followed by the currents. Such currents are known as earth currents, and present phenomena of a highly interesting nature. But, apart from these electrical manifestations, there is generally a difference of electrical condition between the various parts of the earth's surface and those portions of the atmosphere adjacent to or above them. Inasmuch as air is one of the very best insulators, this difference of condition (or potential) in any particular region is in most cases incapable of being neutralized or equilibrated by an electric flow. Consequently the air remains more or less continually charged. With these points admitted as facts, the question arises, Whence this electricity? There have been very many and various opinions expressed as to the cause of terrestrial electricity, but far the greater portion of such theories lack fundamental probability, and indicate causes which cannot be regarded as sufficiently extensive or operative to produce such tremendous effects as are occasionally witnessed. I take it that we may safely regard the evolution of electricity as one of the ways in which force exhibits itself, that, in other words, when work is performed electricity may result. When two bodies are rubbed together, electricity is produced, so also is it when two connected metals are immersed in water and one of them is dissolved, or when one of the junctions of two metals is raised to a higher temperature than the other junction. I will go further than this, so far, in fact, as to maintain that there is a reasonable ground for supposing that every movement, whether it be of the mass or among the constituent particles, is attended by a change of electrical distribution; and if this is true, it may easily be conceived that inasmuch as motion is the rule of the universe, there must be a constant series of electrical changes. Now, these changes do not all operate in one direction, nor are they all of similar character, whence it is that not only are there earth currents of feeble electro-motive force, but that this E.M.F. is constantly varying, and that, furthermore, electricity of high E.M.F. is to be met with in various parts of the atmosphere.

With earth currents we have here very little to do. The rotation of the earth is in itself sufficient to generate small currents, and the fact that they vary in strength at regular periods of the day and of the year enforces the suggestion that the sun exerts considerable electrical influence on the earth. Letting it be granted, however, that the earth is variously charged, how comes it that the air is also charged, and with electricity of greater tension than that of the earth itself? It was pointed out by Sir W. Grove that if the extremities of a piece of platinum wire be placed in a candle flame, one at the bottom and the other near the top, an electric current will flow through the wire, indicating the presence of electricity. If an electrified body be heated, the electricity escapes more rapidly as the temperature rises. If a vessel of water be electrified, and the water then converted into steam, the electric charge will be rapidly dissipated. If a vessel containing water be electrified, and the water allowed to escape drop by drop, electricity will escape with each drop, and the vessel will soon be discharged.

We regard it as an established fact that the earth has always a greater or less charge; whence it is safe to assume that in the process of evaporation which is going on all over the surface of the globe, more particularly in equatorial regions, every particle of water, as it rises into the air, carries with it its portion, however minute that portion may be, of the earth's electric charge. This small charge distributes itself over the surface of the aqueous particle, and the vapor rises higher and higher until it reaches that point above which the air is too rare to support it. It then flows away laterally, and as it approaches colder regions gets denser, sinking lower and nearer to the earth's surface. The aqueous particles becoming reduced in size, the extent of their surfaces is proportionately reduced. It follows that as the particles and their surfaces are reduced, the charge is confined to a smaller surface, and attains, therefore, a greater "surface density," or in simpler language, a greater amount of electricity per unit of surface.

Electricity, as above set forth, is in what is known as the "static" condition (to distinguish it from electricity which is being transferred in the form of a current), when it has the property of "repelling itself" to the utmost limits of any conductor upon which it may be confined. This will account for the charge finding its way to the surface of the water particles, and will furthermore account for the greater density of the charge as the particle gets smaller and has the extent of its surface rapidly diminished. It may be mentioned that the surface of a sphere varies as the cube of its radius.

Returning to the discussion of the state of affairs existing when the particles have reached their highest position in the atmosphere, we may imagine that they set themselves off on journeys toward either the north or the south pole. As they pass from the hotter to the colder regions, a number of particles coalesce; these again combine with others on the road until the vapor becomes visible as cloud. The increased density implies increased weight, and the cloud particles, as they sail poleward, descend toward the surface of the earth. Assuming that a spherical form is maintained throughout, the condensation of a number of particles implies a considerable reduction of surface. Thus, the contents of two spheres vary as the cubes of their radii, or eight (the cube of 2) drops on combining will form a drop twice the radius of one of the original drops. We may safely conceive hundreds and thousands of such combinations to take place until a cloud mass is formed, in which the constituent parts are more or less in contact, and, therefore, behave electrically as a single conductor of irregular surface, upon which is accumulated all the electricity that was previously distributed over the surfaces of the millions of particles that now compose it.

The tendency of an electric charge upon the surface of a conductor is to take upon itself a position in which it may approach nearest to an equal and opposite charge; or, if possible, to attain neutrality. If, then, a cloud has a charge, and there is no other cloud above or near it, the charge induces on the adjacent earth surface electricity of the opposite kind. Thus, assuming the cloud to be charged with positive electricity, the subjacent earth will be in the negative state. The two electricities[3] exert a strong tendency to combine or to produce neutrality, whence there is a species of stress applied to the intervening air. Possibly the cloud will be drawn bodily toward the earth more or less rapidly, according as the charge is great or small. Or, on the other hand, the cloud may roll on for leagues, carrying its influence with it, so that the various portions of the earth underneath become successively charged and discharged as the cloud progresses on its journey.

Should the cloud be near the earth, or should it be very highly charged, the tension of the two electricities may be so great as to overcome the resistance of the intervening air; and if this resistance should prove too weak, what happens? How does the discharge show itself? It takes place in the form of a lightning flash, and passing from the one surface to the other-or, maybe, simultaneously from both-produces neutrality more or less complete.

There has recently been a little discussion in these pages on the subject of lightning, some having stated that they discerned the discharge to take place upward-that is, from the earth toward the cloud. I will not venture so far as to say whether or not the direction of the discharge is discernible; possibly the flash may sometimes be long enough to enable one to tell; but I have never so seen it, and have always looked upon the eye as a deceitful member-very. "The lightning flash itself never lasts more than 1/100000 of a second." It is, however, just as likely that a discharge may travel upward as downward. What controls the discharge? Does the quality of the charge?-that is to say, is the positive or the negative more prone to break disruptively through the insulating medium? Investigations with Geissler's and other tubes containing highly rarefied gases have made it tolerably clear that there is a greater "tearing away" influence at the negative than at the positive pole, and if two equal balls, containing one a positive and the other a negative charge, be equally heated, the negative is more readily dissipated than the positive. But, so far as we at present know, this question enters into the discussion scarcely, if at all. Our knowledge seems rather to point to the substances upon which the charges are collected. The self-repellent nature of electricity compels it to manifest itself at the more prominent parts of the surface, the level being forsaken for the point. The tension of the charge, or its tendency to fly off, is proportionately increased. And if at a given moment the tension attains a certain intensity, the discharge follows, emanating from the surface which offers the greatest facilities for escape. The earth is generally flatter than the cloud, whence, in all probability, the discharge more frequently originates with the cloud.

Should a lightning flash strike the earth and produce direct neutrality, it is possible that no damage will result, although this again is not always certain, because when the cloud charge acts inductively on the earth it produces the opposite (say negative) charge on the nearer parts, the similar (or positive) state is also produced at some place more or less distant. Sometimes this "freed" positive (which, by the way, accumulates gradually and physiologically imperceptibly) is collected at some portion of the earth's surface. When the negative is neutralized by the discharge, the freed positive is no longer confined to a particular region, but tends to dissipate itself, and a shock may be felt more or less severely by any person within the region. Or, again, a similar shock may be experienced by a person standing within the negative zone on the neutralization of the charge.

I may take the opportunity here to mention a highly interesting and instructive incident observed on local telegraph circuits during a thunderstorm. The storm may be taking place at some distance from the point of observation. The electrified cloud induces the opposite charge beneath it, the similar charge being repelled. It is noticeable that the needle of a galvanometer, starting from the middle position, goes gradually over to one side, eventually indicating a considerable deflection. Suddenly, owing apparently to a lightning discharge some distance away, the force which caused the deflection is withdrawn, and the needle rebounds with great violence to the opposite side. In a short time, the cloud becoming again charged on its under surface, and recommencing its inductive effect upon the adjacent earth, the needle starts again, and goes through the same series of movements, a violent counterthrow following every flash of lightning.

If we can so far control our imagination, we may conceive the earth to be one large insulated conductor, susceptible to every influence around it. If then the earth, as a mass of matter, behaves as above indicated, there is no plausible reason for declining to regard any other large conducting mass in a similar light, and as a body capable of being subjected more or less completely to the various impulses affecting the earth. In other words, a large mass of conducting material, partially or perfectly insulated, is, during a thunderstorm, in considerable danger. With this portion of the subject I shall, however, deal more fully when discussing the merits of lightning protectors.

Lightning discharges do not take place between cloud and earth only, but also, and perhaps more frequently, between too oppositely charged clouds. We then get atmospheric lightning, the flash often extending for miles. This form of lightning is harmless, and in all probability what we see is only a reflection of the discharge. The oft-told tale of the lightning flying in at the window, across the room, and out of the door, or up the chimney, is all moonshine, and before dealing with lightning protectors I intend to expose some of the fallacies concerning lightning. Were the discharge to pass through a house, it would infallibly leave more decided traces and do more damage than simply scaring a superstitious old lady now and again. Many people are often and unnecessarily frightened during a thunderstorm, but it may be safely predicted that a person under a roof is infinitely safer than one who is standing alone on level ground, and making himself a prominence inviting a discharge. Rain almost invariably accompanies the discharge, and the roof and sides of the house being wet, they form a more or less perfect channel of escape should a flash strike the building.-Knowledge.

[3]

We may speak of two electricities or two electric states without necessarily implying adherence either to the single or the double "fluid" theory. Whether electricity be of two kinds or no, the fact remains that there are two conditions, and all the features of this paper may be explained with equal facility by the supporters of either hypothesis.

* * *

RESEARCHES ON MAGNETISM.

By M. DUTER.

If we place a thin plate of steel in a uniform magnetic field, so that the lines of force of the field may be normal to the surface of the plate, we have a very flat magnet, the two faces of which are the two polar surfaces. The magnetic distribution thus obtained seems to disappear when the plate is no longer in the field. The following experiments show that this disappearance is not complete. I made use of plates of tempered steel of 1 millimeter in thickness, and varying in diameter from 0.040 to 0.005 meter. With these plates I formed cylindrical batteries. In some of these batteries the plates are directly in contact, and in others they were separated by leaves of pasteboard, the thickness of which varied from that of the thinnest paper to 0.001 meter. The batteries were placed in the central portion of a very powerful magnetic field, and after they have been taken out they formed perfectly regular permanent magnets. The supporting power of these magnets was the greater the nearer its constituent plates were to each other. In a battery of 100 plates, touching each other directly, and strongly pressed into a brass cylinder, the portative force at each extremity rose to 30 grammes. This first result having been obtained, I dismounted the batteries, plate by plate, taking care to mark the upper and under side of each. I found then that each plate retained only an excessively slight magnetism. Yet each of them still constituted a flat magnet, of which the two faces are the polar surfaces; for on rebuilding the battery it gave again a perfectly regular magnet, though weaker than it was at first. The separation of the magnet into its constituent plates, and its reconstruction, maybe repeated indefinitely.-Comptes Rendus.

* * *

Dr. T. Tommasi (Cosmos les Mondes) notes that the thermic constant of thallium is exactly the mean of the thermic constants of potassium and lead, the two metals which it most resembles in its chemical character.

* * *

IMPROVED GAS LIGHT BUOY.

GAS LIGHT BUOY.

The accompanying engravings represent a light buoy made by the Pintsch's Patent Lighting Company for the river Humber. The chief dimensions of the buoy are given in the engraving, which also shows that the gas holder is placed within the boat in such a way as to be protected from blows likely to cause any leakage. The buoy has a special form to meet its requirements as a lightship, and the conditions of its employment is the fast tidal current of the river. It was designed by Mr. C. Berthon, of Westminster, and is intended to carry a six months' supply of gas, the burner, regulator, and lamp being on the well known Pintsch system. The hull is formed of ? inch plate, 24 feet 3 inches total length, and 9 feet beam at the line of flotation. The laps of the plates are 4 inches wide, and riveted with ? inch rivets, spaced 2? inch apart center to center. The keel and stem are both in one piece, as shown, and to this the garboard strake is to be fastened. The bilge pieces are riveted on to the bilge, and made of 9 inches by 4? inches by 9/16 inch T-iron. A wooden fender, 4 inches by 4 inches wood, is fitted on both sides of hull, running from stern to stern, by 3 inches by 3? inches by 7/16 inch L-iron top and bottom with the sheer as shown. The hull from water line falls in as shown, so as to describe at midships an arc of 4 feet 6 inches, and a circular deck of ? inch plate is riveted on the hull. There are two man-holes, each 16 inches diameter in the clear, placed in end plates of the circular deck as shown, and provided with covers ? inch thick, secured by twenty screws ? inch diameter. The edge of each manhole is stiffened by a welded iron ring. The surface of the mooring link that comes in contact with the shackle and mooring chain is steeled. The gas holder rests upon a plate bent up on each side, and riveted to the keelson, and is prevented from rolling by four gusset plates, with two short pieces of angle iron riveted thereto at the ends and coming in contact with the holder, and at the ends by angular plates, and angle iron riveted on each side and riveted to the keelson. The superstructure consists of four legs of angle iron 2? inches by 2? inches by 5/16 inch, the upper ends of the legs being attached to a square flanged plate for supporting the lighting apparatus. Four wooden battens of pitch pine, 4 inches by 1? inches, and bolted on to each cant of the angle iron superstructure, with ? inch galvanized iron bolts and nuts.

GAS LIGHT BUOY.

* * *

PROJECT FOR A ROADSTEAD AT HAVRE.

The present port of Havre is absolutely insufficient to answer the ever increasing requirements of commerce. Its entrance, which is too narrow and not deep enough, does not permit steamers to go in, come out, and perform their evolutions with the rapidity required by our epoch. So they are gradually abandoning our port, and going to load and unload at Anvers and elsewhere. A large number of wise heads, who are anxious about the future of this port and our national interests, have devoted themselves to finding a means of enlarging it, not by dredging new basins, which would prove ruinous to the budget and useless in twenty years, but by installing a true roadstead at the entrance to the present basins.

FIG 1.-PLAN OF THE PROJECTED ROADSTEAD AT HAVRE.

Upon the maps of the hydrographic service may be seen, under the name of the Little Roadstead, a vast extent of sea nearly two kilometers wide by three to four in length, bounded upon one side by the heights of Heve and St. Adresse, and upon the other by the rocky line of Eclat and of the heights of the roadstead (Fig. 1). This Little Roadstead, so called, in order to become a genuine one, would have to be protected against the great waves of the open sea. To thus protect it, to close it as quickly and as cheaply as possible-that is the problem.

In 1838, Charles de Massas presented a project (the first in order of date), which consisted in constructing upon the Eclat reef a semi-lunate dike, and a breakwater at Cape Heve. Moreover, upon the emergent parts of the Eclat reef and heights of the roadstead he proposed to erect two forts.

FIG. 2.-LEWIS' FLOATING BREAKWATER.

The defense of the port of Havre is a very important question, and one that appears to be completely abandoned. Since Engineer Degaulle in 1808 advised the erection of a fort upon the Eclat, and requests have periodically been made and projects drawn. The requests are forgotten, but the drawings are in the Ministers' portfolios, and if France should to-morrow have a war with a maritime power our great northern port might be destroyed and burned by the smallest squadron.

Some years after Massas' project, two officers, Deloffre and Bleve, and an engineer named Renaud, received a commission to search for a means of closing a portion of Seine Bay. These gentlemen advised the erection of two dikes, one on the Eclat shoal in the very axis of this reef, and the other at Heve. Between these two masonry dikes was to be placed a floating breakwater. This project, which was submitted to Admiral de Hell in 1845, had a favorable reception, and the Admiral especially applauded the trial of breakwaters, "which were much talked of in England, although the effects that they might produce were not well known." Deloffre, Bleve, and Renauds' project comprised two forts-one to the north and the other to the south of the roadstead. For a long time nothing more was said about it, and it is only during recent years, when the peril has become imminent for Havre (threatened as it is of being abandoned even by the French transatlantics), that the question has again became the order of the day.

FIG. 3.-FROIDEVILLE'S FLOATING BREAKWATER.-END VIEW.

Mr. Bert, a merchant, would protect the Little Roadstead by means of two jetties, 1,000 and 1,600 meters in length, built, one of them upon the Eclat and the other upon the eminences of the roadstead. These would be constructed by forming a foundation of loose rocks, and using earth and brick above the level of the water. Mr. Vial has likewise proposed a rockwork of 2,000 meters in length, to form a dike 10 meters in height and width, whose platform would be on a level with the highest tides.

Next comes the more recent project of Mr. Coulon. Seeing that it is the deposits of the ocean and not those of the Seine that accumulate upon the estuary, Mr. Coulon advises the construction of a dike about 2,000 meters in length, starting from the Havre jetty, and ending at the southwest extremity of the shoals at the roadstead heights, and a second one returning toward the northwest, of from 500 to 1,000 meters. A third and very long one of not less than 8 kilometers would be built from Honfleur to the Ratier shoals.

This latter one, in contracting the bay, would contribute to increase the force of the current, which, throwing back at the ocean its mud and pebbles, would give us the depths of 15 and 20 meters indicated on the map of Beautemps-Beaupre.

This year, again, two projects have arisen; one of them due to Mr. Thuillard-Froideville, and the other to Mr. Hersent.

According to Mr. Hersent, it would be necessary to surround the Little Roadstead with an insubmersible dike built upon the rocky shoals, which would begin at Cape Heve (which it would consolidate) and end opposite the entrance to the port at 1,600 meters from the jetties. Through it there would be five passages. Afterward another dike would be constructed, starting from the shore and running to meet the jetty designed to inclose the Little Roadstead. On turning the angle at which it met the jetty it would be continued as far as to Berville. Finally, a third dike, running from Honfleur to Berville, would complete the system.

Mr. Hersent's project, which is one of the most remarkable of those that have been proposed, has one fault, and that is that it would require twelve years of work, and cost 158 million francs.

Mr. Thuillard-Froideville, completely renouncing masonry dikes as being too costly and taking too long to construct, proposes to inclose the Havre roadstead by means of floating breakwaters. As we have already seen, the use of these between Cape Heve and the Eclat shoals had already been proposed in 1845. As the project was abandoned, the models of these breakwaters are rare.

In Bouniceau's "Marine Constructions" we find a curious figure, a sort of open framework of clumsy form anchored in a singular manner, and surmounted by rooms for watchmen, semaphores, posts for the shipwrecked, etc. It is, indeed, the most complicated and most impracticable type that could be imagined.

Mr. Lewis' model, which was exhibited last year at the International Fisheries Exhibition, was, on the contrary, one of the simplest. It consisted of a strong piece of wood of nearly triangular section, the sharpest angle of which, being turned oceanward, was designed to cut the waves and cause them to break over it (Fig. 2). If, by favor of divine Providence, this breakwater, which presents absolutely plane surfaces to the shock and pressure of the waves, is not broken to fragments in the first tempest, it will certainly acquit itself of the role for which the inventor destined it. When we have a system of resistance to the sea, anchored and facing a certain direction, and consequently not being able to revolve around its axis as vessels do, care must be taken not to give it entire surfaces.

FIG. 4.-FROIDEVILLE'S BREAKWATER.-MODE OF JOINING THE PARTS.

Mr. Froideville's breakwater consists of a framework 25 meters in length, and 9 in height and width, and having the form of an irregular 5-sided prism (Fig. 3). The smallest side of the prism is designed to serve as a flat keel. The axis is formed of a metallic float, from whence start radii that form the skeleton of the framework, and that are designed for connecting the center with five long spruce beams that form the angles of the prism. To these beams are affixed the cross pieces that form the openwork sides. Five long pieces of wood parallel with the beams, but not so strong as they, protect the cross pieces and secure them against breakage in the middle. All the angles of the breakwater and all points of juncture of the pieces are protected with iron, and it is in order to counterbalance the weight of all this iron that the central float is used. Parallel with this first breakwater, there are two other and smaller ones, which are designed for reducing the effect of rolling as much as possible. Reduced to a single float, the breakwater might remain under the waves too long, but, owing to the two others, it rights itself, warps around, and always presents the spur of its sharp roof to the wave.

In order to prevent the breakwaters from clashing against each other, they are united end to end in a very simple and ingenious manner. From each of them there starts a deeply inserted iron bar which terminates in a journal that permits the breakwater to oscillate. Between these two bars there is a sort of swivel, whose pieces, in playing upon one another, give the breakwaters elasticity, while always holding them apart (Fig. 4). From each side of the swivel start the branches of a stirrup iron to which the anchorage chain is attached. This latter is of steel, without solderings, and it is so perfectly constructed that no breakage need be feared. To the other extremity of the chain is attached an anchor having two flukes, which both engage with the bottom.

Mr. Froideville proposes to set up two lines of these breakwaters, for a length of about 7? kilometers, starting at the north from Cape Heve, taking in depths of 15 meters (the best that are found in the Little Roadstead), passing in front of the Eclat shoal and the heights, and ending opposite the entrance of the present port.

The first row is designed for breaking the force of the waves, and the second for lending its aid in times of high tempests, and stopping the surge that has escaped from the first.

The extreme simplicity of this project has permitted its promoter to affirm that in a few months, and with nine millions, he can inclose the Havre roadstead.

The Little Roadstead, being thenceforward protected, will become an excellent port of refuge in bad weather. In addition, a system of lighters, or, better, a few floats connected with the shore and forming a rock, will permit vessels to take on their cargoes with great rapidity.

Mr. Froideville's project presents the further advantage of rendering it easier to put the port of Havre quickly in defense. A certain number of floating batteries, anchored behind the breakwaters and protecting the advances of torpedo boats by means of their firing, would make a formidable defense. Not having to perform any evolutions, they might without danger be invested with armor plate thicker than that of ordinary ironclads. In order to complete the system, there might be erected upon the Eclat shoal an ironclad fort like that which defends the entrance of Portsmouth.

An English chronicler of the fourteenth century, in speaking of his country, places it above all others, and declares that men are handsomer, whiter, and purer blooded there than elsewhere, and he says that this is so "because it is so." We would not like to imitate his naive reasoning, and yet, for defending the very original system proposed by Mr. Froideville, we have only our conviction, which we share, moreover, with a large number of sea-faring men and engineers. Mathematics are powerless to predict to us with accuracy the manner in which the floating breakwaters will behave, but experiment remains. Let the promoter of the project, then, be given authority to inclose a few hundred meters, and if, as we suppose, the breakwaters shall remain immovable in a northwester, a maritime revolution will have been brought about.-La Nature.

* * *

IMPROVED CATCH BASIN.

In 1882, M. Bacle published in Le Génie Civil a study of the sewer systems in some of the large foreign cities. There may be found there a description of the Liernur system at Amsterdam, Leyden, and Dordrecht, in Holland, and in certain cities of Germany and the United States.

IMPROVED CATCH BASIN.

This system consists in the employment of two distinct systems of ducts, one for the discharges from water-closets and the other for household wastes, rain water, and the discharges from factories when sufficiently purified. This arrangement allows the employment of sewers of small section, provided that it shall be unnecessary to enter them for the purpose of cleansing them. It has been necessary, therefore, to provide inlets with a separating apparatus called "gully" or "catch basin," which retains as completely as possible all solid matter, mud, excrement, and debris of every kind which maybe floated in by street washing or by rain-water, and which may be capable of causing stoppages in the sewers, the choking up being followed by fermentation and the emanation of noxious vapors.

M.C. Pieper of Berlin suggests a device for a catch basin, which appears to meet the requirements. It is in the form of a cylindrical metal box, enlarged in its upper section to receive a filtering cylinder of perforated sheet iron, which occupies almost the upper half of the device and rests upon the smaller lower part. The entire apparatus is covered by a movable funnel, through which enter water and any rubbish which it may carry with it. From one side a tube allows the liquid to be discharged, while a siphon placed on the opposite side serves the same purpose under certain circumstances, as will be explained.

Figure 1 represents the apparatus discharging under normal conditions. The heavy matter, sand, stones, etc., falls to the bottom into a receptacle which can be lifted out from time to time and emptied. The lighter buoyant matters, straw, vegetable debris, paper, etc., remain at the surface, and are retained by the filter; the water passing through the holes in the sheet iron rushes in a filtered condition through the annular space which exists in the upper part between the two cylinders, and escapes by the waste-pipe when the water reaches a proper level. If at a given moment the quantity of water flowing in is too much to be discharged through this waste-pipe, the level of the water mounts in the cylinder until it reaches the top of the siphon. Immediately the siphon comes into play and empties the upper part of the apparatus, and the filtered water contained in the annular space already mentioned quickly re-enters the cylinder through the perforated sheet iron, and in so doing cleans out the perforations with considerable energy. This second period is represented in the second figure.

The mouth of the siphon being placed above the movable basket, the heavy matters contained in the latter are not in the least disturbed, and the metallic screen placed over the mouth prevents the entrance of any floating matters. When siphonic action ceases, the water in the short arm of the siphon empties itself into the main receptacle, and by so doing cleanses the screen. During a rain or the washing of the streets, the siphon can work in concurrence with the ordinary discharge-pipe. It is evident of course that these two-pipes can be placed on the same side of the apparatus, if this prove the most convenient arrangement.

We will add that this apparatus can be applied not only to the Liernur system, but also can be used for preventing the entrance of obstructions into sewers of the ordinary type, where the grade is small or where the quantity of water is insufficient; and if we adopt the system of "everything to the sewer," can we not find in the employment of this apparatus an element for the realization of the famous formula, "Always in circulation, and never in stagnation?"-Le Génie Civil.

* * *

[Concluded from SUPPLEMENT No. 454, page 7249.]

WATER-POWER WITH HIGH PRESSURES AND WROUGHT-IRON WATER-PIPE.

By HAMILTON SMITH, JR., M. Am. Soc. C.E.

METHODS OF CONDUCTING WATER AND TRANSMITTING POWER.

A description of the mode of using water-power for driving the North Bloomfield tunnel in California, some years since, will give a good illustration of some of the advantages of the hurdy-gurdy. This tunnel was originally about 8,000 feet long, through a slate highly metamorphosed, with its general line passing under a good-sized stream, at a depth of about 190 feet. There were eight working-shafts, each about 200 feet deep, which, with the lower entrance or portal, gave sixteen working faces. Diamond drills were used at the lower heading requiring power; the other fifteen headings were driven by hand-work. It was uncertain how much water would be encountered; but from the location, it was evident that a large quantity might be struck in any shaft, and hence it became necessary to have ample power at hand at each opening, in readiness for such an emergency. A pipe main was laid along the general line of the tunnel, with its pen-stock 285 feet vertical above the surface at the upper shaft, and 549 feet above the lowest shaft. It was made of single riveted sheet-iron, of No. 14 (Birmingham) gauge, in lengths of 20 feet, put together stove-pipe fashion, with the joints made tight by cloth tarred strips and pine wedges. This pipe had a diameter of 15 inches at the pen-stock, diminishing from this to 13, 11, and 7 inches at its lower end. From it, short branches, 7 inches in diameter, were extended to the several shafts. It was in one place carried across the stream by a light suspension bridge, some 150 feet long, the trunk of a tree on each side forming a convenient tower. The aggregate length of the main and branches was 9,960 feet, with some 2,500 feet additional, for the branch to the diamond drills. The pipe was laid on the surface of the ground, its only protection being in places a couple of 1?-inch planks tacked together, and placed over it; the range of temperature was from 10 degrees to 107 degrees Fahr. (in the shade). It was inspected by the foreman of the tunnel-work as he daily walked over the line; besides the occasional driving of a few wedges and putting on a band or two, it gave no trouble from leakage, which probably for its entire length did not amount to more than an average of 3 or 4 cubic feet a minute; from time to time, a little sawdust was put into the pen-stock. Three stop-gates were placed on the main, and a separate stop-gate at each shaft, operated by a fine-threaded screw, so that the water could be cut off when desired.

FIG. 13.

Fig. 13 shows the arrangement of the machinery for hoisting and pumping, which was identical at the several shafts, except that the hurdy-gurdies varied from 16? feet in diameter at the upper shaft to 21 feet at the lowest shaft. The water-wheel moved only in one direction; the pinion on the wheel-shaft drove the spur-wheel, to which the pitman of the pump-bob was attached. On the spur-wheel shaft was a friction-gear, driving the hoisting-reel; this reel was mounted on sliding blocks, so that hoisting was done by putting it in gear, the empty load being dropped by a friction-band. Changing the size of the water-wheel as the pressure increased permitted the use of the same pattern of machinery at the different shafts. The water was brought to the wheel by a discharge-pipe, some nine feet long, having a vertical movement by ball-and-socket joint, so that at pleasure, by dropping the pipe, the machinery could be run at various speeds, or entirely stopped. At the end of this discharge-pipe was a cast tapered nozzle, about 3? inches in diameter, in which was inserted a ring of saw-plate steel having the desired diameter, and which was held in place by an annular screw-cap. By changing the ring, which only required a few moments' time, any desired amount of water, up to 3 or 4 cubic feet a second, could be discharged against the wheel. The stop-gate was left wide open while the machinery was running. The pumping was done by eighteen pumps, of Cornish pattern; the largest amount of water pumped from any one shaft was something over 30 cubic feet a minute; the power at hand, however, was ample to pump more than twice that quantity. It was rather curious at, this shaft to see more water coming from the pumps than was used on the wheel. The two diamond drills were driven by a small hurdy-gurdy set on the rear of the drill carriage. This, but at another tunnel, was afterward modified by placing a separate hurdy-gurdy on a sleeve on each drill-rod; the advance movement of the drill being given by hydrostatic pressure on an annular piston, thus doing away with all gearing. These eight sets of machinery were run for nearly 2? years' time; the only break being that of a spur-wheel, doubtless caused by the careless dropping of a steel bar between it and its pinion. Aside from this accident, practically not a dollar was spent for repairs, and the machinery, including the pipe, was in about as good order when the tunnel was finished as when it was first erected. One man, on a twelve hour shift, operated the machinery at each shaft, besides dumping the cars; two men kept the 18 pumps on the line in order, the principal work being in keeping the suction-pipes for the down-grade headings tight; thus a force of 18 men was only required for the eight shafts. The cost of the pipe, gates, etc., when put in place, was $14,631, and of the machinery about $60,000.

FIG. 14.

At the Idaho gold quartz mine, situated near Grass Valley, California, water-power has been introduced during the past year (1883), taking the place of steam. The supply main is of wrought-iron, 22 inches in diameter, 8,764 feet long, buried in the ground below frost-line. The joints, as a rule, are riveted together, with occasional lead joints to admit of slight movements in the pipe.[4] The pipe was coated by placing each joint in a bath of boiling tar and asphaltum; to insure the most thorough coating, it is necessary to keep the pipe for ten or fifteen minutes in the boiling mixture. A cast-iron stop-gate is placed at the lower end of the main, and also one at each of the branches. Cast-iron man-holes are attached to the main, which, although they have given no trouble in this particular case, are very objectionable for high pressures, as it is difficult to avoid ruptures with cast and wrought-iron combined, owing to the great difference in the elasticity of the two metals. The long seams of this pipe are double-riveted, and the round seams single riveted; at the lower end, iron of No. 6 gauge is used. From the end of the main, the water is led to the several wheels by branches of smaller diameter.

The water is delivered at the hoisting-wheel with a total head of 542.6 feet. For power and for mill uses, etc., the required supply is about 8 cubic feet a second; this draught reduces the effective head to say 523 feet.

The work done consists in driving the following described machinery:

A large air-compressor-2 cylinders, double acting, air compressed to 75 pounds-requiring about 140 horse-power.

A line of Cornish pumps, forcing the water from a depth of 1,450 feet vertical; 12-inch plungers for upper 800 feet, 6-inch plungers for lower 650 feet, with 6-foot stroke, requiring from 55 to 70 horse-power.

Hoisting from a double-compartment shaft-two connected winding reels, moving separate cages-requiring 35 horse-power, or more.

A few small machine-tools and smithy forges, requiring 3 or 4 horse-power.

A 35-stamp mill, with concentrating apparatus, etc., requiring about 70 horse-power.

The total amount of power required being say 320 horse-power, for which seven Pelton hurdy-gurdy wheels are employed.

The power in all cases is transmitted by systems of Manila rope belting; the rope is 2 inches in diameter; the grooves in the sheaves or pulleys are slightly oval, so that the rope does not go quite to the bottom; the ropes are horizontal, and run very slack (no tighteners), with no appreciable slip; the splices are made very long, to obtain uniformity in diameter.

FIG. 15.

This method of transmitting power appears to work most perfectly and has given excellent satisfaction. It is thought, at the Idaho, to be greatly preferable to the gearing formerly in use when the works were driven by steam (for such work as pumping or hoisting, leather or rubber belting is never used), besides being much cheaper in first cost.

The wheel driving the air-compressor is 6 feet in diameter, running 300 turns[5] per minute, with 1-15/18-inch nozzle; three ropes are used from the wheel shaft to the counter-shaft, and six ropes from the latter to the fly-wheel shaft.

For driving the pumps, there are two water-wheels, set on the same shaft, one 5 feet and the other 7 feet in diameter, either of which can be used at will, thus permitting different rates of speed; two nozzles are placed on each wheel, so that if necessary the power can at any time be doubled. The smaller wheel has a 1? inch nozzle, and runs 360 turns a minute; the larger has 1?-inch nozzle, and makes 270 turns a minute. There are two ropes from the wheel-shaft to a counter-shaft, and four ropes to the fly-wheel shaft, on which is the pinion driving the spur-wheel attached to the pitman of the pump-bob. Hoisting is done by two wheels placed side by side on the same shaft, the buckets and nozzle of each wheel being placed in opposite directions. Both wheels are 8 feet in diameter, with 15/16-inch nozzles, and make at full speed about 225 turns a minute. Reversing the movement of the shaft is done by shutting off water from one wheel, and turning water on the other wheel; the two water-gates for these nozzles are quickly opened or closed by hydrostatic pressure, afforded from the water main. In addition to the usual brakes on the winding-reels, a brake is placed on the wheel-shaft, so that it can be stopped in a very short period of time.

The shock to the pipe by the almost instantaneous cutting off the water at these hoisting-wheels (nearly one cubic foot per second) has not apparently had any injurious, effect. To lessen this shock, a compensating balance was designed, but which is not now in use. A wheel, of small diameter, is used for the smithy, etc., running at a very high velocity. The wheel driving the stamp-mill is 6 feet in diameter, makes 300 revolutions a minute, and is supplied through a 1-3/16 inch nozzle. The head of water at this point is a few feet greater than at the other wheels. Power is transmitted from the hoisting and mill-wheel shafts by two and four ropes, the same as with the pumping rig. The amount of work done, or of water used, has not been carefully determined; judging from the indicator cards taken from the old steam-engines, the managers of the Idaho believe that an efficiency of fully 80 per cent. of the theoretic power of the water is obtained on the main driving-shafts of the machinery. The substitution of water for steam-power has resulted in a large saving of expense. Although the hills near by are covered with fine forests, thus making wood cheap, and although a round price is charged for water by the company furnishing it, the cost of the water is considerably less than that of the wood formerly used as fuel. The cost of attendance is altogether in favor of the water-wheels, which hardly require any attention. The cost of the change from steam to water-power was $46,496.32.

[4]

With buried wrought-iron pipe this precaution is unnecessary, as the elasticity of the iron will admit of the movement due to changes of temperature, without injury to the rivets.

[5]

The revolutions per minute, of these wheels, as here given, are only approximate, as the design was to have the bucket speed=? 2(gh)?.

* * *

TEXAS CREEK PIPE AND AQUEDUCT.

A description of this work will be of interest in showing the general practice followed in California for carrying water across deep mountain gorges. In order to augment its water supply, the North Bloomfield Gravel Mining Company desired to conduct water from a stream known as Texas Creek, in Nevada County, California, across the Big Ca?on branch of the South Yuba River into the main Bloomfield flume or aqueduct, which was located on the side of Big Ca?on Creek, at a vertical elevation of 620 feet above the bed of the latter stream. The quantity of water to be carried was about 32 cubic feet a second (1,250 miner's inches), which could be diverted from Texas Creek at a point 480 feet vertical above the Bloomfield flume. An aqueduct about 4,000 feet long, partly of ditch and partly of flume, was needed to bring the water from the catchment dam on the creek to the brow of the gorge. The vertical head for the pipe could therefore be from a maximum of 460 feet down to any lesser head; with a head of 460 feet, the pipe would be 4,790 feet long; and with a head of 220 feet, the length would be 4,290 feet. Assuming a maximum tensile strain upon the iron of 16,500 pounds per square inch, with the formula for the greatest head of about

and a lower value of the coefficient in the last equation for the lesser heads, it was found, by calculation, that the least cost could be obtained with a head from 300 to 350 feet. The head fixed upon was 303.6 feet, with a length of 4,438.7 feet. A profile of the pipe, with nearly the same horizontal and vertical scales (horizontal scale, showing slope lengths), is given in Fig. 14; details are given in Figs. 15 and 16. The pipe was of double riveted sheet iron, made in lengths of about 20 feet, and of the following thicknesses:

1,349 linear feet, 0.083 inch thick.

220 " 0.095 "

240 " 0.109 "

250 " 0.120 "

320 " 0.134 "

610 " 0.148 "

1,450 " 0.165 "

Some of the iron was of the very poorest quality; the pipe was made by contract in San Francisco, without the supervision of an inspector, as the contractors were a firm of good reputation; the bad quality of the iron was not detected until too late to have it corrected. Since then, the writer has always had such pipes-the mines of which he has been the manager using large quantities-made directly on the ground where they are to be used; the pipe makers, in the latter case, always reject such sheets as are too much below in thickness the standard gauge, and those which show in passing through the rolls the bad quality of iron; tests of each joint by hydrostatic pressure would add too much to the cost.

FIG. 16.

The maximum tensile strain upon each of the seven thicknesses of iron used was intended to be 16,500 pounds per square inch. Some of the sheets were below the standard gauge, so that, in reality, the tensile strain is sometimes as high as 18,000 pounds. The mean diameter of the pipe was 1.416 feet. The entrance into the pen-stock was tapered, so that the coefficient of contraction was about 0.92. For pressures not exceeding say 380 feet, the joints were put together stove-pipe fashion. For greater pressures, the joints were made by an inner sleeve riveted on one end of the joint, with an outer lap-welded band, as shown by Fig. 15; lead was run into the space between the outer band and the pipe, and then tightly driven up by calking-irons. The pipe was laid under the bed of the Big Ca?on Creek, a large stream when in freshet, where the head below the hydraulic grade line was 760 feet. Some of the lead joints leaked slightly at first, but this was soon remedied by more careful calking. No man-holes or escape-gates were used. The pipe for the larger part of the year is not filled at its upper end; when such is the case, the water at the inlet carries down the pipe a great quantity of air, for which escapes must be provided to prevent a jarring or throbbing, which would soon destroy the pipe. The escape air-valves used are shown by Fig. 16. They consist simply of a heavy flap valve of cast-iron, with recess for lead filling to give greater weight set on top the pipe, seating on a vulcanized rubber cushion, and swinging on a loose hinge. When the pipe is only partly filled with water, the valves drop down by their own weight, allowing the air to freely escape; when the water rises above the level of a valve, it is tightly closed by the resulting pressure. There are fourteen of these valves, those on the lower end being designed to allow air to freely enter the pipe in case it should burst in the deeper portion, and thus prevent any collapse from atmospheric pressure. The valves have answered the desired purposes most effectually. The pipe was hauled over a road built to the inlet end, and shot down the mountain side by means of a V-shaped trough of wood. For the lower end, the joints were hauled up the cliff side into place by a crab worked by horse-power. On steep inclinations, the pipe was held firmly in place by wire ropes fastened to iron pins in the solid rock, as shown by the sketch. The covering of earth and stone was 1 foot to 2 feet in depth; with steep slopes, the earth was kept from sliding by rough dry walls, or by cedar plank placed crosswise. The pipe was laid in 1878; the first year it broke twice, owing to the wretched quality of the iron; since then, it has given no trouble, and has required practically no attention. The cost of this work-ditch and flume 4,000 feet, and pipe 4,440 feet-was $23,779.53.

A comparison of the relative values of n, in the formula v = n (r s)?, for the foregoing ditch, flume, and pipe will be instructive. The ditch has a width on the bottom of 3 feet, on the top of 6 feet, with a depth of 3 feet, and an inclination of 20 feet per mile; its sides are rough, being cut in part through the rock and with sharp curves, although fairly regular; with a flow of about 1,300 miner's inches (32.8 cubic feet per second) the ditch runs about full.

Therefore:

Q = 32.8, hence

and

The flume is of unplaned boards, rectangular, 2.67 wide X 2.83 deep, with an inclination of 32 feet per mile. There are sharp curves, although these were made as regular as practicable; the boiling action of the water passing around these curves brought the flow line (Q = 32.8) nearly up to the top of the sides; with a straight flume of the same size, the water would have doubtless stood several inches lower.

Therefore:

a = 2.67 × 2.83 = 7.56 ;

Q = 32.8, hence

and n = 59.

With the pipe,[6] 1.416 diameter,

Allowing for loss of head due to imparting velocity to water, and for contraction,

We hence have the following values of n, in v = n (r s)?, Q being constant:

Rough ditch, with sharp curves. 33

Rectangular flume, with sharp curves. 59

Wrought-iron pipe, with easy curves, coated with asphalt, but with rivet-heads forming noteworthy obstructions (m = 65.5, and 2m = n) 131

[6]

Vide pages 120-122, Transactions American Society of Civil Engineers for 1883.

* * *

PARACHUTE HYDRAULIC MOTOR.

The very singular and simple hydraulic motor which we illustrate herewith is the invention of a Russian engineer, Mr. Jagn. It is scarcely as yet known in Western Europe, where, however, something will probably be heard of it ere long. Its true field would seem to be Egypt, India, or any country where canals or rivers are used for irrigation, and where it is desired to draw water from them at particular spots in the simplest and cheapest manner. At present in nearly all such cases water is raised by hand or steam power; nevertheless it must be obvious that the current of the canal itself, slow though it may be, is quite sufficient to raise a small portion of the discharge to the very moderate height generally needed to lift it over the banks into the adjoining fields. Why then is it not employed for the purpose? The answer is obvious, when we consider the various hydraulic motors at present in use. Of course, motors worked by water pressure must here be excluded; and we are left with scarcely anything but the undershot wheel, the turbine, and the screw pump. All these require expensive buildings and erections to set them to work, present but a very small fraction of their surface to the water at any one time, and must be very large and costly if they are to draw even a very moderate amount of power from such a source. There is no possibility of adjusting them readily to suit variations in the speed of the current or in the quantity of water required, nor of moving them from place to place should this be convenient.

PARACHUTE HYDRAULIC MOTOR.

The motor of Mr. Jagn is on a totally different principle. Its essential features consist, as shown, of an endless rope made of hemp or aloe fiber, which takes a turn or two round a pair of drums mounted on a barge or pontoon, and then passes down the channel to return over a pulley hung from a floating punt, at such a depth that the whole of the rope is immersed in the water. Along this rope are suspended at equal intervals a number of parachutes made of sail cloth. The rope passes through the center of each of these, and to it are attached a series of strings, the other ends of which are connected to the outside edge of the parachute. Thus they act like the spokes of an umbrella to prevent the parachute from opening too far under the pressure of the current. The parachutes must be placed so far apart that the current may act fairly on each, and the sum of the pressures forms the force which draws the rope through the water. The moment, however, that any parachute has passed round the return pulley, the current acts upon it in the opposite direction. It then shuts up like an umbrella, and assumes a volume so small that its resistance on the return journey is insignificant. After passing round the drum at the upper end, it at once opens afresh of its own accord, and once more becomes part of the moving power of the whole system. The parachutes are formed by first cutting out a complete circle of cloth, and then taking from this a sector equal to one-fifth or one-sixth of the total area. Such parachutes are found to keep their form when stretched by the water better than a surface originally spherical, although the latter would be theoretically more correct. The motion of the drum is transmitted by spur, gear, or otherwise as may be required, to give the requisite speed.

It will be seen that the advantages of the system are as follows: First, the facility it offers for obtaining a large working area, which may be increased or diminished at will, according to the requirements of the moment, by lengthening or shortening the rope. Secondly, the ease with which it is erected and set to work. Thirdly, the small part of the river section which it occupies, so as to present no obstacle to navigation. Fourthly, the ease with which it can be mounted on a barge of any kind, and carried wherever it may be needed. Fifthly, it is not stopped, like all other hydraulic motors, by the appearance of ice-it has, in fact, already been worked under ice in the Neva. At the same time, winds and waves have no influence upon it.

The principle of the apparatus is not altogether new. In 1872 there was tried on the Ohio River an arrangement termed the Brooks motor. It was composed of two drums, placed horizontally and parallel to each other. Round these there passed endless chains at equal spaces apart on the length of the drums, and to these chains were fixed wooden blades or arms of a curved form, and so jointed to the frames that they opened when moving in one direction, and closed down on the chain when moving in the other. In this machine the weight of the chains was a serious obstacle to obtaining any large amount of power. The whole apparatus was mounted on a heavy wooden scaffold, which proved an impediment to the flow of the river. Again, the resistance due to the surface of the returning blades and to their stiffness was found to be far from insignificant.

In the present system Mr. Jagn has found, after many experiments, that the best effect was obtained when the parachutes were spaced apart at twice their diameter, and when the rope made an angle of 8 degrees to 10 degrees with the current. It is found that when open and in motion the parachutes never touch the bottom. This was the case with a rope containing 180 parachutes of 4 feet diameter, and working in a depth of only 6 feet. This is easily explained by the fact that the velocity of a current always diminishes as it approaches the bottom. Hence the pressure on the lower part of the parachute will be less than that on the upper part; but the former pressure tends to draw the parachute downward, while the latter tends to raise it to the top of the water. Thus, the latter being the larger, the parachute will always have a tendency to rise. In fact, it is necessary to sink the return pulley sufficiently deep to make sure that the parachutes will not emerge from the surface. For the same reason no intermediate supports are needed over the driving span; if any are needed it is for the return span, on which the parachutes are closed. Of course, if metal were used instead of hemp, the case would be entirely different, and intermediate supports would have to be used for anything but very moderate lengths.

In practice, Mr. Jagn has employed two ropes wound upon the same pair of drums, which are mounted upon a pontoon. The ropes are spread out from each other, as in Fig. 1, making an angle of about 10 degrees. The low specific gravity of the system enables ropes to be employed of as great a length as 450 yards, each of them carrying 350 parachutes of 17.2 square feet area. As half of these are in action at the same time, the total working area for the two cables is 5,860 square feet. This immense area furnishes a considerable amount of power even in a river of feeble current. Comparing this with a floating water wheel of the type sometimes employed, and supposing this to have only 172 square feet of working area, such a wheel must have a length of 46 feet, a diameter of 23 feet, and seventy-two floats, each 2? feet wide. The enormous dimensions thus required for a comparatively small working area point sufficiently clearly to the advantage which remains on the side of the parachute motor.

The general arrangement of the system is shown in the engraving. Behind the return pulleys, D D, are attached cords, A A, with some parachutes strung upon them. These present their openings to the current and preserve the tension of the connecting ropes. At the further end of each cord is a board, B, which is kept in a vertical plane, but lying at a slight angle to the direction of the current; and this acts to keep the two moving ropes apart from each other. The two return pulleys are, however, connected by a line, E, which can be shortened or lengthened from the pontoon, and in this way the angle of inclination between the two ropes can be varied if required. A grooved pulley presses upon the trailing span at the moment before it reaches the circumference of the drum. It is mounted on a screwed spindle, which is depressed by a nut, and thus makes the wet rope grip the outside of the drum in a thoroughly efficacious manner.

The author has made a theoretical investigation of the power which may be developed by the system, and has worked out tables by which, when the velocity of the current and the other elements of the problem are known, the power developed by any given number of parachutes can be at once determined. We do not reproduce this investigation, which takes account of the resistance of the returning parachutes and other circumstances, but will content ourselves with quoting the final equation, which is as follows: T = 0.328 S V3. Here T is the work done in H.P., S is the total working area in sq. m., and V is the velocity of the current in m. per sec. Taking V = 1, and S = 1 sq. m., which is by no means an impracticable quantity, we have T = 0.328 H.P. per sq. m. We may check this result by the equation given, in English measures, by Rankine-"Applied Mechanics," p. 398-for the pressure of a current upon a solid body immersed in it. This equation, F = 1.8 m A v2 / 2g, where m is the weight of a unit of volume of the fluid-say 62 lb.-A is the area exposed, and v the relative velocity of the current. Mr. Jagn finds that the maximum of efficiency is obtained when the rope moves at one-third the velocity of the stream. If this velocity be 3 feet per second, we shall have v = 2. and we then get F = 7 lb. per sq. ft. very nearly. Now 1 sq. meter = 10.76 sq. ft., and a speed of 1 ft. per second (which is that of the rope) is 60 ft. per minute. Hence the H.P. realized in the same case as that taken above will be 7 × 10.76 × 60 / 33,000 = 0.137 H.P. The difference between the two values is very large, but Rankine, of course, depends entirely on the value of the constant 1.8, which is quite empirical, and is for a flat band instead of a hollow parachute. Taking, however, his smaller figure, and an area of 544 square inches, which Mr. Jagn has actually employed, we get a gross power of = 0.137 × 544 = 7.43 H.P. Hence it will be seen that the amount of power which can be realized by the system is far from being inconsiderable.

Lastly, we may point out that the durability of the apparatus will be considerable. There is no wear except at the moment when the rope is passing round the drum, and even then there need be no slipping or grinding. The apparatus worked in the Neva was in very good condition after running for four months day and night. After five months about one-fifth of the parachutes had to be replaced, but after seven months the hemp rope still showed no signs of wear. We think we have said enough to show that for certain purposes, and especially, as we have, already mentioned, for irrigation purposes, the new motor is well worthy of a careful and extended trial. It may be questioned even whether we have not here the germ of an idea which may hereafter enable us to solve one of the most interesting and important of engineering problems, viz., the utilization of the great store of power provided for us twice daily in the ebb and flow of the tide.-The Engineer.

* * *

IMPROVED SHAFTING LATHE.

Our engraving represents a new departure in shaft turning lathes, and is the result of thirty years' experience in the manufacture of shafting, with many years' study, to perfect a machine of the greatest practical capacity and efficiency.

IMPROVED SHAFTING LATHE.

The principal points of difference from a common engine lathe are readily distinguished, among which may be mentioned the absence of centers and tail stock, a traveling head with hollow driving spindle, and a stationary tool rest and water tank. By dispensing with a tail stock a much shorter bed may be used, and the hollow driving spindle enables any length shaft to be turned, with one setting of the tools. The tool rest is so arranged as to allow of perfect lubrication of the tools, keeping the shaft cool, and at the same time holding it perfectly rigid and strong; the operator is not required to travel the length of the bed, but remains near the driving belt, feed gearing, etc. Power is communicated to the driving spindle by means of a sliding pinion on a splined rod inside the bed, the driving belt and gears being at the end.

The driving head, after having traveled the length of the bed and turned a shaft, is returned by a quick feed, and stops automatically, allowing nearly time enough for the operator to grind tools and be ready with another shaft, thus economizing the time completely.

Wood, Jennison & Co., Worcester, Mass., are the makers, and they say that with a good quality of iron they have turned three hundred feet of two inch iron in ten hours.

* * *

POWER STRAIGHTENING MACHINE.

The machine is provided with a pair of rolls at each end of the bed, which are adjustable for different lengths of shaft, and are made to revolve by power applied through suitable gearing and a splined rod inside the bed; the bar of iron being placed on the periphery of the rolls receives a rotary motion by friction, and shows the crooked places in the same way and with the same ease as though rotating on centers in the usual manner; vertically adjustable blocks are arranged in the base of the press to support the iron; power is applied by means of gearing to a splined rod at the back of the machine, on which is a sliding clutch connecting, at the will of the operator, with an eccentric; the eccentric conveys motion and power through a link to the elbow joint at the front of the press, which forces a plunger down against the iron.

POWER STRAIGHTENING MACHINE.

Sufficient adjustment is provided for different sizes of iron by turning a nut at the top of the press.

Any point in the length of the bar can be reached by moving the press on the bed. Any length of iron can be straightened, and the most laborious and disagreeable work in the process of making shafting is rendered easy and rapid. Made by Wood, Jennison & Co., Worcester, Mass.

* * *

HYDRAULIC MINING IN CALIFORNIA.

By GEORGE O'BRIEN.

Our knowledge of the primitive operations of the aboriginal inhabitants of the globe in pursuit of gold is barely traditional, as we are only aware that from very early times the precious metal was collected and highly prized by them, and that they chiefly extracted the visible gold, which existed in prodigious quantities on or closely beneath the surface of the earth, and of its being particularly abundant in Asia and Africa. But we can draw more positive conclusions as we survey remains of the rude but effective contrivances used by them in later, but still remote, periods, with full evidence as to the extent of their operations, in the numerous perpendicular shafts located at short distances from each other, over large areas of auriferous gravel in India, as well as from precisely similar memorials of ancient workings which remain also further demonstrations, in the abandoned "hill diggings," and shifted beds, and beds of rivers, in Peru South America, flowing between the sea and coast ranges of the Andes, descending in a northeasterly direction to the river Amazon, and that their much coveted and enormous productions were the accumulated riches of the Incas, transferred as spoils of war to their Spanish conquerors in the sixteenth century. And for similar explorations in the same class of depositions we have the experiences of our own times, and which explain by comparison all the previous operations alluded to.

Thus in the year 1849, after the cession of the northern portion of Mexico to the United States of North America, the rich mineral district of California was at once invaded by hardy and intelligent bands of mining adventurers from all parts of the world, who, with little other means at their disposal but pick, shovel, and pan, soon fell on the productive bars of rivers and rich ravines where the gold was trapped, derived from its original birthplaces, where it had been sparsely disseminated, to be dispersed by the subsequent disintegrations and denudations of the mountains themselves, and deposited in a disengaged form for the first comer; and so perfect were sometimes these concentrations, in certain localities where water once streamed, that, divested of its earthy matrix, the cleansed pure metal was found deposited, detained by its superior specific gravity, on the bare rock, and only hidden from vision by a slight covering of vegetable mould. In this manner, as an example of such concentration, a "pot" or "find" (in mining parlance) to the value of £10,000 was collected in a space of 15 square yards, or within the limits of a particular "mining claim," at the foot of Mokulumne Hill, in a southern county of California, soon after the territorial transfer from Mexico. And in search of such locations we must account for the numberless shafts which still exist both in India and Peru, and sometimes sunk within a few feet of each other, passing through the alluvium to a depth of 40 feet to the bed rock.

These mining adventurers soon extended their explorations over the other recently acquired territories, and built Virginia City, the capital of Montana, with the gold derived from the alluvium of a river channel which they excavated; and its inhabitants were the founders of an institution called the Vigilance Committee, with "Lynch law," and by it ruled supremely for many years. But their surface diggings, by the manual operations alone of multitudes, were soon exhausted in every direction, and then their energies and powers of invention were dedicated to discover and explore deeper and more permanent depositions, along the western slopes of the Sierra Nevada, the Andes of the Western Territories, and which originally were without doubt several miles higher than they are at the present time-probably 20,000 feet above the sea-level-and of which, or whatever superior elevation they formerly had, the greater portion of it has already been removed, by the continuous natural action of centuries, to form there, as elsewhere, the plains and prairies of the earth, burying and diverting by the mutation the ancient river system, whose sources of supply were consequently extinguished by the removal of these altitudes. These denudations and subsequent depositions have been caused by alternations of temperature and combined action of air, water, and time since the creation of the world; and powerful demonstrations of these transformations instruct us in all directions, if we care to observe them. Thus in "Little Cottonwood" ravine, in the Wahsatch range of mountains in Utah Territory, lie isolated in the center of the valley huge masses of metamorphic granite, some blocks of which weigh individually thousands of tons, and were dislodged from the hills-which on either side are of limestone formation-with no visible granite in them, having been undermined by the removal of their pulverized basis by denudation, and which is the material now forming the tablelands, the foundation, of Salt Lake City. The blocks of granite, having alone resisted the atmospheric changes, were precipitated into the valley beneath, and the Mormons are now constructing their cathedral church from these granitic remains.

The melting of the snow which formerly capped all these ranges of mountains furnished the water that once flowed in the extinguished channels of ancient rivers, and whose now diverted waters were also the powerful agent to assist in causing these marvelous alternations; and by the means of hydraulic mining we can advance our feeble knowledge on the subject.

These mighty changes have gradually been accomplished, and the accumulated denudations of the mineral zones have defended themselves by strata of crystallized silicates of quartz of various thicknesses, and thus in places beneath such system of defense, or by their own concretion, have preserved in many localities a thickness of from 500 to 600 feet of conglomerate, but without this necessary cementation its further removal is very certain when again attacked by water. An example of this continuous process is very observable in "Death Valley," Lower California, where a width of about 100 miles has been filled up from the hills to the gulf of same name, invading and occupying its former bed; and this activity is still proceeding, and a temporary formation of tableland above it is in course of removal, although already overgrown with forest trees, which are toppling over the side which is being attacked. But eternal snow now only covers a small portion of these Sierras, and a period of comparative repose may be expected, as the distribution has already been far advanced by the excessive reduction of the mountains.

The deep and extensive depositions which I now attempt to describe attracted the early attention of the mining adventurers, and were called "hill diggings," but not being properly understood were therefore not immediately operated upon, and remained in abeyance, while the lower, richer, and more manifest alluvials endured. They were designated "blue gravel," the color being due to the action of sulphuret of iron and other salts, the cementing auxiliaries requisite to form the hard conglomerate, and on exposure to the atmosphere changes color to yellow and violet, losing also its firmness by oxidation.

The "great blue lead" is another important mining term and designates the alluvium found reposing in a well-defined channel on the bed rock, being the well-worn path of an ancient river; and it is obvious that the material in these channels should be richer than the general mass beyond their limits.

"Rim rock" is the boundary line of the banks of the old channel, and, like the bottom, is well worn and corrugated by the running water into cavities and "pot holes," where the force of the stream eddied. The width of these channels varies from 60 to 400 feet, and the cement near the rim and bottom is always richer than elsewhere. The wider and deeper channels generally course from N. to N.W. The richest and most explored belt of gold-bearing alluvium in California lies between the South and Middle Yuba Rivers, commencing near Eureka, in Nevada county, and extends downwards to Smartsville and Timbuctoo, in Yuba county, a distance of 40 miles; and from among snowy mountains the country falls gradually from where the ravines or canons are cut by the actual rivers, which are 2,000 feet beneath the auriferous gravel and region near Smartsville, and 2,000 feet above the Yuba River, where snow is unknown, and near its terminus the ancient river bed courses more westerly than it does above it, and crosses Yuba below Timbuctoo, where the auriferous depositions disappear. The whole distance of 40 miles has been ransacked by the earlier adventurers, and around the village of Timbuctoo was a center famed for its wonderful yield of gold, obtained chiefly in the ravines, in holes, and depressions in the bed rock. These hollows detained the concentrations of the denudated alluvium from the altitudes, and were generally closely beneath the surface, and by such guidance and means of discovery the miners traced the gold up the ravines to their sources in the lofty mounds and deposits, or hills of cemented conglomerate, near Eureka in Nevada county; and by constructing canals from a higher level began the new system of "hydraulic mining" and washing, and gradually extended their operations over the area of the metallic zone mentioned, of 40 miles long by 20 wide, using the Yuba River below Timbuctoo to receive and discharge the tailings, or refuse from their operations. The result in gold was considerable, but the system is from its violent nature difficult to control, by presuming to handle and remove such huge depositions in order to collect the richest material. The idea was bold, being an anticipation of Nature's operations; but the equitable disposal of the "tailings" in a cultivated country is impossible, as the silt runs down the rivers, creating banks and bars in their channels, obstructing navigation and agricultural arrangements.

General Description of Hydraulic Mining.

The first work to be accomplished, after calculating that the amount or value of the material to be operated upon is sufficient to guarantee the cost of the undertaking in general, is the construction of a canal or canals, to convey the requisite volume of water from the fountain-head, and of sufficient elevation to command the ground to be worked upon, having also in view the levels of the necessary tunnels and shafts as outlets for the discharge of the gravel through them, these being engineering operations requiring much skill and labor to avoid useless after-cost.

Aqueducts of considerable elevation have to be constructed across deep valleys, and the speculation is at all times problematical, as the ground cannot be properly tested until the water arrives upon it, and disputes may arise between the shareholders of the canal and the mining company, ending frequently in the one devouring the other, unless the two interests be quickly amalgamated.

The starting point should be the lowest level, or "bed rock," on the white cement in the ancient channel, which is probably the original silt collected in it, and is harder than the conglomerate above it, which is more easily removed. The courses of these beds can be easily traced by landmarks and undulations, and occasional exposures of the bed rock at low levels; also trial shafts are sunk in various places in search of it, to a depth of 100 feet, passing through blue gravel. The grades of these beds are not steep, being from 10 to 40 feet per mile as of an ordinary river, and the calculated thickness of the alluvial conglomerate is about 600 feet in many places across the ridge between the South and Middle Yuba River across the Columbia.

The power of the water for the operation is dependent on a given volume deposited in a reservoir, and at sufficient elevation above the points of discharge, as on this depends effectivity to tear down the gravel. It is delivered to the miner by huge pipes made of wrought iron, and laid down to follow the curvatures of the surface of the ground; and the pipe I now treat of, belonging to the Excelsior Water Company, has a diameter of 40 inches on a length of 6,000 feet, and 20 inches on the rest of its length of 8,000 feet, being 9,000 feet in all; and this large pipe forms an inverted siphon across a valley, following on the gravel, to the top of the hill into the reservoir.

These pipes offer advantages over wooden aqueducts for spanning chasms, and also to avoid coursing the sides of valleys; being also cheaper to construct in general, and less liable to accidents from fire and storms, and have the convenience for conveying the water from point to point, as the work of excavation advances, necessitating the removal of portions of the aqueduct forward. The watershed, or reservoir, of the Excelsior Company embraces the valley of the South Yuba and its affluents, and the entire cost of its eight amalgamated canals was 750,000 dollars.

The rainfall during three years in the mountains averaged 49 inches annually, while the medium in the same period did not exceed 20 inches in the plains beneath. The height of the reservoir above the tailing, or Yuba River, is 393 feet: and the height of the head above the floor, or outlet sluice-tunnel, of the Blue Gravel Mining Company was 197 feet.

The exact quantity of water required to wash every class of gravel is difficult to estimate, but no quantity or pressure would be excessive if properly arranged. The measurement of water is effected by miner's inches, by allowing it to flow from the reservoir of the seller to the purchaser through a box 10 or 12 feet square, with divisions to obtain a quiet head, with a slide or opening capable of adjustment to any required measure; thus an opening of 25 inches by 2 inches, with a quiet head of 6 inches above the middle of the orifice, would give 50 inches, or about 89,259 cubic feet of water, flowing during ten hours per day, being an amount necessary for a first-class operation. The capability of the Excelsior Canal in rainy seasons reached to a delivery in twenty-four hours, to the various mining companies, of 21,120,000 cubic feet of water, or 8,000 miner's inches, and the value of the water paid for by the Blue Gravel Company in forty-three months ending November 9, 1867, was 157,261 dollars, being at the rate of 15 cents of a dollar per miner's inch; and the proportion of water used to wash down 989,165 cubic yards of gravel was 17,074,758 cubic yards, or 17? cubic yards of water to 1 cubic yard of gravel; and when at work the quantity of gravel daily moved was 1,298 cubic yards, and the estimated cost to move one cubic yard of gravel was 5 and 7/10 cents of a dollar. But in the face of contingencies the Blue Gravel Company moved 1,000,000 cubic yards of gravel in four years, or at the rate of 250,000 cubic yards per annum, and the cost of washing each cubic yard stands thus:

Cents.

Cost of water, at 15 cents per miner's inch 5.77

Cost of labor, gunpowder, sluices, and superintendence 16.10

Continue Reading

Other books by Various

More
Yule Logs

Yule Logs

Young Adult

5.0

It was a grand success. Every one said so; and moreover, every one who witnessed the experiment predicted that the Mermaid would revolutionize naval warfare as completely as did the world-famous Monitor. Professor Rivers, who had devoted the best years of his life to perfecting his wonderful invention, struggling bravely on through innumerable disappointments and failures, undaunted by the sneers of those who scoffed, or the significant pity of his friends, was so overcome by his signal triumph that he fled from the congratulations of those who sought to do him honour, leaving to his young assistants the responsibility of restoring the marvellous craft to her berth in the great ship-house that had witnessed her construction. These assistants were two lads, eighteen and nineteen years of age, who were not only the Professor's most promising pupils, but his firm friends and ardent admirers. The younger, Carlos West Moranza, was the only son of a Cuban sugar-planter, and an American mother who had died while he was still too young to remember her. From earliest childhood he had exhibited so great a taste for machinery that, when he was sixteen, his father had sent him to the United States to be educated as a mechanical engineer in one of the best technical schools of that country. There his dearest chum was his class-mate, Carl Baldwin, son of the famous American shipbuilder, John Baldwin, and heir to the latter's vast fortune. The elder Baldwin had founded the school in which his own son was now being educated, and placed at its head his life-long friend, Professor Alpheus Rivers, who, upon his patron's death, had also become Carl's sole guardian. In appearance and disposition young Baldwin was the exact opposite of Carlos Moranza, and it was this as well as the similarity of their names that had first attracted the lads to each other. While the young Cuban was a handsome fellow, slight of figure, with a clear olive complexion, impulsive and rash almost to recklessness, the other was a typical Anglo-Saxon American, big, fair, and blue-eyed, rugged in feature, and slow to act, but clinging with bulldog tenacity to any idea or plan that met with his favour. He invariably addressed his chum as "West," while the latter generally called him "Carol."

You'll also like

Chapters
Read Now
Download Book