This is a pre-1923 historical reproduction that was curated for quality. Quality assurance was conducted on each of these books in an attempt to remove books with imperfections introduced by the digitization process. Though we have made best efforts - the books may have occasional errors that do not impede the reading experience. We believe this work is culturally important and have elected to bring the book back into print as part of our continuing commitment to the preservation of printed works worldwide.
MODERN THEORY OF LIGHT
The oldest and best known function for an ether is the conveyance of light, and hence the name "luminiferous" was applied to it; though at the present day many more functions are known, and more will almost certainly be discovered.
To begin with it is best to learn what we can, concerning the properties of the Interstellar Ether, from the phenomena of Light.
For now wellnigh a century we have had a wave theory of light; and a wave theory of light is quite certainly true. It is directly demonstrable that light consists of waves of some kind or other, and that these waves travel at a certain well-known velocity,-achieving a distance equal to seven times the circumference of the earth every second; from New York to London and back in the thirtieth part of a second; and taking only eight minutes on the journey from the sun to the earth. This propagation in time of an undulatory disturbance necessarily involves a medium. If waves setting out from the sun exist in space eight minutes before striking our eyes, there must necessarily be in space some medium in which they exist and which conveys them. Waves we cannot have, unless they be waves in something.
No ordinary matter is competent to transmit waves at anything like the speed of light: the rate at which matter conveys waves is the velocity of sound,-a speed comparable to one-millionth of the speed of light. Hence the luminiferous medium must be a special kind of substance; and it is called the ether. The luminiferous ether it used to be called, because the conveyance of light was all it was then known to be capable of; but now that it is known to do a variety of other things also, the qualifying adjective may be dropped. But, inasmuch as the term 'ether' is also applied to a familiar organic compound, we may distinguish the ultra-material luminiferous medium by calling it the Ether of Space.
Wave-motion in ether, light certainly is; but what does one mean by the term wave? The popular notion is, I suppose, of something heaving up and down, or perhaps of something breaking on a shore. But if you ask a mathematician what he means by a wave, he will probably reply that the most general wave is such a function of x and y and t as to satisfy the differential equation
d2y / dt2 = (v2) d2y / dx2;
while the simplest wave is
y = a sin (x ? vt).
And he might possibly refuse to give any other answer.
And in refusing to give any other answer than this, or its equivalent in ordinary words, he is entirely justified; that is what is meant by the term wave, and nothing less general would be all-inclusive.
Translated into ordinary English the phrase signifies, with accuracy and comprehensive completeness, the full details of "a disturbance periodic both in space and time." Anything thus doubly periodic is a wave; and all waves-whether in air as sound waves, or in ether as light waves, or on the surface of water as ocean waves-can be comprehended in the definition.
What properties are essential to a medium capable of transmitting wave-motion? Roughly we may say two: elasticity and inertia. Elasticity in some form, or some equivalent of it,-in order to be able to store up energy and effect recoil; inertia,-in order to enable the disturbed substance to overshoot the mark and oscillate beyond its place of equilibrium to and fro. Any medium possessing these two properties can transmit waves, and unless a medium possesses these properties in some form or other, or some equivalent for them, it may be said with moderate security to be incompetent to transmit waves. But if we make this latter statement one must be prepared to extend to the terms elasticity and inertia their very largest and broadest signification, so as to include any possible kind of restoring force, and any possible kind of persistence of motion, respectively.
These matters may be illustrated in many ways, but perhaps a simple loaded lath, or spring, in a vice will serve well enough. Pull it to one side, and its elasticity tends to make it recoil; let it go, and its inertia causes it to overshoot its normal position. That is what inertia is,-power of overshooting a mark, or, more accurately, power of moving for a time even against driving force,-power to rush uphill. Both causes together make it swing to and fro till its energy is exhausted. This is a disturbance simply periodic in time. A regular series of such springs, set at equal intervals and started vibrating at regular intervals of time one after the other, would be periodic in space too; and so they would, in disconnected fashion, typify a wave. A series of pendulums will do just as well, and if set swinging in orderly fashion will furnish at once an example and an appearance of wave motion, which the most casual observer must recognise as such. The row of springs obviously possesses elasticity and inertia; and any wave-transmitting medium must similarly possess some form of elasticity and some form of inertia.
But now proceed to ask what is this Ether which in the case of light is thus vibrating? What corresponds to the elastic displacement and recoil of the spring or pendulum? What corresponds to the inertia whereby it overshoots its mark? Do we know these properties in the ether in any other way?
The answer, given first by Clerk Maxwell, and now reiterated and insisted on by experiments performed in every important laboratory in the world, is:-
The elastic displacement corresponds to electrostatic charge,-roughly speaking, to electricity.
The inertia corresponds to magnetism.
This is the basis of the modern electromagnetic theory of light.
Let me attempt to illustrate the meaning of this statement, by reviewing some fundamental electrical facts in the light of these analogies:-
The old and familiar operation of charging a Leyden jar-the storing up of energy in a strained dielectric-any electrostatic charging whatever is quite analogous to the drawing aside of our flexible spring. It is making use of the elasticity of the ether to produce a tendency to recoil. Letting go the spring is analogous to permitting a discharge of the jar-permitting the strained dielectric to recover itself-the electrostatic disturbance to subside.
In nearly all the experiments of electrostatics etherial elasticity is manifest.
Next consider inertia. How would one illustrate the fact that water, for instance, possesses inertia-the power of persisting in motion against obstacles-the power of possessing kinetic energy? The most direct way would be, to take a stream of water and try suddenly to stop it. Open a water tap freely and then suddenly shut it. The impetus or momentum of the stopped water makes itself manifest by a violent shock to the pipe, with which everybody must be familiar. This momentum of water is utilised by engineers in the "water-ram."
A precisely analogous experiment in Electricity is what Faraday called "the extra current." Send a current through a coil of wire round a piece of iron, or take any other arrangement for developing powerful magnetism, and then suddenly stop the current by breaking the circuit. A violent flash occurs, if the stoppage is sudden enough, a flash which means the bursting of the insulating air partition by the accumulated electromagnetic momentum. The scientific name for this electrical inertia is "self-induction."
Briefly we may say that nearly all electromagnetic experiments illustrate the fact of etherial inertia.
Now return to consider what happens when a charged conductor (say a Leyden jar) is discharged. The recoil of the strained dielectric causes a current, the inertia of this current causes it to overshoot the mark, and for an instant the charge of the jar is reversed; the current now flows backwards and charges the jar up as at first; back again flows the current; and so on, charging and reversing the charge, with rapid oscillations, until the energy is all dissipated into heat. The operation is precisely analogous to the release of a strained spring, or to the plucking of a stretched string.
But the discharging body, thus thrown into strong electrical vibration, is imbedded in the all-pervading ether; and we have just seen that the ether possesses the two properties requisite for the generation and transmission of waves, viz.: elasticity, and inertia or density; hence just as a tuning fork vibrating in air excites a?rial waves, or sound, so a discharging Leyden jar in ether excites etherial waves, or light.
Etherial waves can therefore be actually produced by direct electrical means. I discharge here a jar, and the room is for an instant filled with light. With light, I say, though you can see nothing. You can see and hear the spark indeed-but that is a mere secondary disturbance we can for the present ignore-I do not mean any secondary disturbance. I mean the true etherial waves emitted by the electric oscillation going on in the neighbourhood of the recoiling dielectric. You pull aside the prong of a tuning fork and let it go: vibration follows and sound is produced. You charge a Leyden jar and let it discharge: vibration follows and light is excited.
It is light, just as good as any other light. It travels at the same pace, it is reflected and refracted according to the same laws; every experiment known to optics can be performed with this etherial radiation electrically produced,-and yet you cannot see it. Why not? For no fault of the light, the fault (if there be a fault) is in the eye. The retina is incompetent to respond to these vibrations-they are too slow. The vibrations set up when this large jar is discharged are from a hundred thousand to a million per second, but that is too slow for the retina. It responds only to vibrations between 400 billion and 700 billion per second. The vibrations are too quick for the ear, which responds only to vibrations between 40 and 40,000 per second. Between the highest audible and the lowest visible vibrations there has been hitherto a great gap, which these electric oscillations go far to fill up. There has been a great gap simply because we have no intermediate sense organ to detect rates of vibration between 40,000 and 400,000,000,000,000 per second. It was therefore an unexplored territory. Waves have been there all the time in any quantity, but we have not thought about them nor attended to them.
It happens that I have myself succeeded in getting electric oscillations so slow as to be audible,-the lowest I had got in 1889 were 125 per second, and for some way above this the sparks emit a musical note; but no one has yet succeeded in directly making electric oscillations which are visible,-though indirectly every one does it when they light a candle.
It is easy, however, to have an electric oscillator which vibrates 300 million times a second, and emits etherial waves a yard long. The whole range of vibrations between musical tones and some thousand million per second, is now filled up.
With the large condensers and self-inductances employed in modern cable telegraphy, it is easy to get a series of beautifully regular and gradually damped electric oscillations, with a period of two or three seconds, recorded by an ordinary signalling instrument or siphon recorder.
These electromagnetic waves in space have been known on the side of theory ever since 1865, but interest in them was immensely quickened by the discovery of a receiver or detector for them. The great though simple discovery by Hertz, in 1888, of an "electric eye," as Lord Kelvin called it, made experiments on these waves for the first time easy or even possible. From that time onward we possessed a sort of artificial sense organ for their appreciation,-an electric arrangement which can virtually "see" these intermediate rates of vibration.
Since then Branly discovered that metallic powder could be used as an extraordinarily sensitive detector; and on the basis of this discovery, the 'coherer' was employed by me for distant signalling by means of electric or etheric waves; until now when many other detectors are available in the various systems of wireless telegraphy.
With these Hertzian waves all manner of optical experiments can be performed. They can be reflected by plain sheets of metal, concentrated by parabolic reflectors, refracted by prisms, and concentrated by lenses. I have made, for instance, a large lens of pitch, weighing over three hundredweight, for concentrating them to a focus.[1] They can be made to show the phenomenon of interference, and thus have their wave-length accurately measured. They are stopped by all conductors, and transmitted by all insulators. Metals are opaque; but even imperfect insulators, such as wood or stone, are strikingly transparent; and waves may be received in one room from a source in another, the door between the two being shut.
The real nature of metallic opacity and of transparency has long been clear in Maxwell's theory of light, and these electrically produced waves only illustrate and bring home the well-known facts. The experiments of Hertz are, in fact, the apotheosis of Maxwell's theory.
* * *
Thus, then, in every way, Clerk Maxwell's brilliant perception or mathematical deduction, in 1865, of the real nature of light is abundantly justified; and for the first time we have a true theory of light,-no longer based upon analogy with sound, nor upon the supposed properties of some hypothetical jelly or elastic solid, but capable of being treated upon a substantial basis of its own, in alliance with the sciences of Electricity and of Magnetism.
Light is an electromagnetic disturbance of the ether. Optics is a branch of electricity. Outstanding problems in optics are being rapidly solved, now that we have the means of definitely exciting light with a full perception of what we are doing, and of the precise mode of its vibration.
It remains to find out how to shorten down the waves-to hurry up the vibration until the light becomes visible. Nothing is wanted but quicker modes of vibration. Smaller oscillators must be used-very much smaller-oscillators not much bigger than molecules. In all probability-one may almost say certainly-ordinary light is the result of electric oscillation in the molecules or atoms of hot bodies, or sometimes of bodies not hot-as in the phenomenon of phosphorescence.
The direct generation of visible light by electric means, so soon as we have learnt how to attain the necessary frequency of vibration, will have most important practical consequences; and that matter is initially dealt with in a section on the Manufacture of Light, § 149, in Chapter XIV of Modern Views of Electricity. But here we abandon further consideration of this aspect of our great subject.
* * *
Chapter 1 THE LUMINIFEROUS ETHER AND THE
01/12/2017
Chapter 2 THE INTERSTELLAR ETHER AS A
01/12/2017
Chapter 3 INFLUENCE OF MOTION ON VARIOUS
01/12/2017
Chapter 4 EXPERIMENTS ON THE ETHER
01/12/2017
Chapter 5 SPECIAL EXPERIMENT ON ETHERIAL
01/12/2017
Chapter 6 ETHERIAL DENSITY
01/12/2017
Chapter 7 FURTHER EXPLANATIONS CONCERNING
01/12/2017
Chapter 8 ETHER AND MATTER
01/12/2017
Chapter 9 STRENGTH OF THE ETHER
01/12/2017
Chapter 10 GENERAL THEORY OF ABERRATION
01/12/2017