icon 0
icon TOP UP
rightIcon
icon Reading History
rightIcon
icon Log out
rightIcon
icon Get the APP
rightIcon

Steam Steel and Electricity

Chapter 5 No.5

Word Count: 7290    |    Released on: 06/12/2017

elegraphy, the messages by such means being cablegrams. About these ocean systems there are many features not applying to lines on land, though they are in

d layers of gutta-percha, which is, in turn, covered with jute. Outside of all there is an armor of wires, and the entire cable appears much like any other of the wire cables now in common use with elevators, bridges, a

surrounding water. There is, again, a species of re-induction affecting the core, so that faint impulses may be received at the terminals that were never sent by the operators. All of these difficulties combined result in what electricians term "retardation." It is one of t

e message according to the Vail dot-and-dash alphabet. Now, however, a means still more delicate has been devised, resulting in a faint wavy ink-line on a long, unwinding slip of paper, made by a fountain pen. This strange manuscript may be regarded as the latest system of writing in the world, having no relationship to the art of Cadmus, and requiring an expert and a special education to decipher i

nguage, but should be especially interesting to the American boy and girl. It is a

tive officials of the British government refused a charter. In August, 1850, they laid a single copper wire covered with gutta-percha from Dover in England to the coast o

Atlantic from Newfoundland to Ireland, and the wonderful discovery was made that the floor of the ocean was a vast plain, not more than two miles below the surface, extending from one continent to the other. This plain is about four hundred miles wide and sixteen hundred long, and there are no currents to disturb the mass of broken shells and unknown fishes that lie on its oozy surface. It was named the "Telegraphic Plateau," with a view to its future use. At either edge of this plateau huge mountains, from four

r, but across the sea. In November, 1856, he had succeeded in forming a company, and the entire capital, amounting to 350,000 pounds, was subscribed. The governments of England and the United States promised a subsidy to the stockholders. The cable was made in England. The Niagara was assigned by the United States, and the Agamemnon by England, each attended by smaller vessels, to lay the c

posite shores. There were fearful storms. The huge Agamemnon, overloaded with her half of the cable, was almost lost. But finally the spot in the waste and middle of the Atlantic was reache

o do it, existing in the brains and faith of men, though at first that way was not known. From this third meeting the two ships again sailed away, the Niagara for America, the Agamemnon for Valencia Bay. This time the wire did not part, and on August 29th, 1858, the old world and the new were bound together f

ar. A bitter enmity grew up between us and England. The telegraph, and all its persevering projectors, were almost absolutely forgotten. Electricians declared the project utterly impracticable, and it began, finally, to be denied that any messages had ever crossed the Atlantic at

tern, unavailable as it proved for the ordinary uses of commerce, and this vessel was large enough to carry the entire cable in her hold. In July, 1865, the huge steamer left Ireland, dropping the endless coil into the sea. The same men were engaged in this last attempt that had failed in all the

large sum of money, and a still larger sum of hopes. Yet the Great Eastern sailed again in July, 1866, her tanks filled with new cable and Field once more on her decks. It was the last, and the successful attempt. The cable sank steadily and noiselessly

e is often said to be a malice, a spirit of rebellion, in inanimate things. They refuse to become slaves until they are once and for all utterly subdued, and then they are docile forever. Yet the malice truly lies in the inaptitude and inexperience of men. Had Field and his associates known how to make and lay an Atla

ther $200,000,000. The length of land wires throughout the world is over 2,000,000 miles, c

y times in these years, in pursuit of his great idea. At last, like Morse, he was crowned with wealth, success, medals and honors. H

e last half of the nineteenth century--before mankind awoke to a new and startling surprise; the telegraph had been made to transmit not only lan

eneral business opinion that it was perhaps an instrument useful in colleges for demonstrating the wonders of electricity, but not useful for commercial purposes because it made no record. "Business will always be done

ative apparatus was accompanied by simultaneous inventions by Gray, Edison, and others. This remarkable instance of several of the great electricians of the country evolving at nearly the same time the same principal details of a revolutionary invention, has never been fully explained. The first rather crude and ineffective arrangements w

n of applied science. It is the ignorant and narrow only who are incredulous, and the ears of intelligence are open to every sound. All that is not absurd is possible, and all that is possible is sure to be accomplished. The telephone, a

lection drifts the mind backward and renders it almost incredible in the present. The human voice, recognizable, in articulate words, is apparently borne for miles, now even for some hundreds of miles, upon an attenuated wire which hangs silent in the air carrying absolutely nothing more than thousands of little varying impulses of electricity. Not a word that is spoken at one end

nduction. To the brief explanation of that phenomenon previously given th

usiness life is lengthened one-third, while his business may mostly be done, to his great convenience, from one place. It has given employment to a large number of persons, a large proportion of whom are young women. The status of woman in the business world has been, fortunately or unfortunately, by so much changed. It has introduced a new necessity, never again to be dispensed with. It has changed the ancient habits, and with them, unconsciously, the habit of thought. Contact

d in an impish embodiment of himself. Meantime the talking is done into a hole in the side of the box, while the receiver is held to the ear. This is all that appears superficially. An operation incredible has its entire machinery concealed in these simplicities. It is difficult to explain the mystery of the telephone in wo

operator. This process also will work backwards. An electric current produces a magnet, and a magnet also may be made to produce an electric current. It is one more of the innumerable, almost universal, cases where scientific and

ion that if the battery were detached from that conducting wire, and if, instead of its being a wire for the carrying of a battery current it were itself a permanent magnet, the same results would happen in the other wire if it were rapidly moved toward and away from this permanent magnet. If the reader should stretch a wire tightly between two pegs on a table, and should then hold the arms of a common horseshoe magnet very near it, and should twang the stretched wire with his finger, as he would a guitar string, the electrometer would show an induced alternate curre

increased or diminished as the tremblings of the wire cause it to approach or recede from it. Therefore if a wire be led away from each pole of a perman

gm or membrane will be shaken, will vibrate, with the movement of the air produced by the voice. If a cannon be fired all the windows rattle, and are often broken. A peal of thunder will cause the same jar and rattle of window panes, manifestly by what we call "sound"--vibrations of the air. The window frame is a "diaphragm." The ear is constructed on t

se, there is placed a diaphragm of thin sheet iron. This is held only around its edge, and its center is free to vibrate toward and from the end of this polarized magnet. This thin disc of iron, therefore, follows the movements, the "soundwaves," of the air against it, which are caused b

ntly used in descriptions of electrical appliances. Instead of using the terms positive and nega

lses pass through this second coil, and increase or diminish the magnetism in the magnet round which it is coiled. That, in turn, affects by magnetic attraction the diaphragm that is arranged in relation to its magnet precisely as described for the first. The first being controlled as to the extent and rapidity of its movements by the loudness and other modifications of the voice, the impulses sent over the ci

and as it impinges upon the transmitting diaphragm. In reproduction at the receiving instrument it is small in volume; almost microscopic, if the phrase may be applied to sound. We hear it only by placing the ear close to the d

and its support. The wires are connected with the diaphragm and its support, and the current passes through the carbon. When the diaphragm vibrates, the carbon is slightly compressed by it. Pressure reduces its resistance, and a greater current passes through it and over the wires of the circuit for the instant during which the touch

o do with the telephone. It is operated by a small magneto-generator,--a very near relative of the dynamo-the current from which is sent over the telephone circuit (the same wires) when the small crank is turned. Sometimes the question occurs: "Why ring one's own bell when one des

unconscious, that one is speaking to a person at a distan

er slightly. This slight movement connects the bell circuit and disconnec

ger conductors, improved instruments, and a metallic circuit--two

nce is old. Bain, of Edinburgh, made a machine partially successful fifty years ago. Like the telegraph as intended by Morse, there was the interposition of typesetting before a message could be sent. It did not write, or follow the hand of the operator in writing, though it did reproduce at the other end of the circuit in facsimile the faces of the types that had been set by the sender. It was a process by electrolysis, well understood

s. The entire class of transmitting instruments must dispense with tedious preliminaries, and must use words. Vail accomplished this i

and sign a check payable in Indianapolis. Personal directions may be given authoritatively and privately. As in the case of the telephone, no intervening operator is necessary. No expertness is required. Even the use of the alphabet is not necessary. A drawing of any description, anything that can be traced with a pen or pencil, is c

ntirely non-technical, it will "pull" hard or easy in proportion to the strength of the passing current. This fact has been observed as the cause of action in the telephone, where one diaphragm, moved by the air-vibrations caused by the voice, causes a varying

t rush or reed growing in the middle of a running stream. The stem of this rush has elasticity naturally; it has a tendency to stand upright; but i

the flow of the current in one of the streams, and the rush will bend a little less before that current and swing around to the side from which it receives less pressure. Cut off either of the currents entirely, and it will bend in the direction of the other current only. In a wor

their relative strength, as the streams did the rush. Imagine further that these two currents are varied and changed with reference to each other by the movements of a p

ng example of what patience and ingenuity may accomplish in the management of what is reputedly the most elusive and difficult of the powers of nature. The machine was some six years in being brought into practical form, and was perfected

ly, their directions being at right angles to each other, and the ends of these cords enter openings made f

it is manifest that both shafts will move alike. If the movement is oblique in any direction, one of the shafts will turn more than the other, and t

ng a pawl, which, being lifted, allows the notched wheel, upon which it bears, to turn to the extent of one notch. The arrangement may be called an electric clutch, that may be arranged in many ways, and the detail of its action is unimportant in description, so that it be borne in mind that each time a notch is passed in turning the shaft by drawing upon or relaxing the cords attached to the pencil-point, an impulse of electricity is sent to an electro-magnet and armature which allows a corresponding whee

o the automatic pen of the receiving instrument. There are two circuits, and two wires are at present necessary for the operation of the instrument. It remains to describe the manner of operating

and pencil-point make on the writing desk. Then both the shafts at the points of the arms of the V will rotate equally. [30] The number of impulses sent from each of these shafts, by the means explained, will be equal. Each of the shafts of the receiving instrument will rotate alike, and each draw up its arm of the automatic pen precisely as though one took hold of the points of the two legs of the V, and drew them apart to right and left in a straight line. This moves the apex of the V, with its pen, in a straight line upward at the same time the writer at the sending instrument p

nary use, the stick and string; rotate the spool. Rotating the spool will, in turn,

able of being automatically reversed. By an arrangement unnecessary to explain in detail, the pencil of the writer lifted from the pape

d and Chicago. Most of his earlier inventions in the line of electrical utility are not distinctively known. He has never been idle, and they all possessed practical merit. For many years before he was known as the wizard of the telautograph, he was foremost in the ranks of physicists and electricians. He is not a discoverer of great principles, but is professionally skillful and accomplished, and eminently practical. His every effort is exerted to avoid intricacy and clumsiness in machinery. In 1878 he was awarded the grand prize at the Paris Exposition, and was given the degree of Chevalier and the decorations of the Legion of Honor by the

amily, prestige, have no place as leverages of success in any field. The rule is toward the opposite. The qualities and capacities t

Claim Your Bonus at the APP

Open