Louis Pasteur: His Life and Labours
n only be seen by means of a rather powerful microscope. Here, then, is a disease in the highest degree virulent, due in its first cause to the infinitely little. Pasteur laid h
us matter, but of microscopic beings
ion as well as in contagious and infectious diseases. Dominated by their hypotheses, they allowed themselves to be deceived by false as
in consequence of which its elements reproduce the virus, and this metamorphosis is not arr
by Jaillard and Leplat, and to bring them into harmony with the facts, not less certain, which had been advanced by Davaine. The rabbits which Jaillard and Leplat had inoculated with a drop of the blood of a cow or sheep stricken with splenic fever, died rapidly, and the blood of these rabbits was shown to be also virulent. It was su
oses itself to the passage of those little organisms into the interior of the body, this ceases to be the case after death. There is no longer any obstacle to arrest or prevent them from acting according to the respective laws of their evolution and of the decomposing influence which belongs to them. It is by anaerobic organisms, in fact, that the putrefaction of dead bodies is begun. They penetrate into the organs and into the blood as soon as this liquid is deprived of oxygen; and it is not long before this happens, the oxygen fixed in the globules being soon consumed. In the body of an animal which has died of splenic fever, putrefaction is still more rapid, because, through the action of the disease, the blood is already in a great degree deprived of oxygen at the time of death. Nothing is more striking than the rapid inflation and almost immediate putrefaction of animals which have succumbed to splenic fever. Of all the vibrios ready to pass from the intestinal canal into the network of mesenteric veins which surround the canal those which seem to take the foremost place are the septic vibrios. These specially merit the name of vi
o that animal splenic fever, and splenic fever only. If, on the other hand, the operation is performed after a greater number of hours-say, between twelve and twenty, according to the season of the year-then the inoculation of the blood will communicate, at one and the same time, splenic fever and septic?mia-acute septic?mia, as it may be called, because of the r
a dungheap, or into some shed or stall, until the knacker's cart happens to pass. The knacker takes his own time, and the body often remains there twenty-four or forty-eight hours. The blood taken from this animal is more or less invaded by putrefaction, and vibrios are mingled with the bacteria of splenic fever, the development of which is arrested the moment the animal di
om the bodies of animals which had been dead a sufficient number of hours to render their blood both splenic and septic; and it was septic?mia, so prompt in its action, that had killed the rabbits of Jaillard and Leplat. As the examination of the blood of these animals showed no signs of bacteria, they had concluded, with great apparent truth, that the inoculation of splenic blood could cause death without any appearance of th
ecisely the spores of which we speak. Experience proves that these spores resist perfectly the poisonous action of compressed oxygen. Inoculating an animal with blood which is at the same time septic and splenic, after the blood has been compressed, the septic germs, remaining alive, produce death, although neither bacteria nor filaments may be perceptible in its blood at the moment of death. It was likewise from Chartres that M. Paul B
ve sterile, because the vibrio is exclusively anaerobic and air kills it. If a spore of this organism could germinate in contact with the air, the product of the germination would be at once arrested and would perish by the action of the oxygen. It is exactly the contrary with the bacilli of splenic fever, which prove sterile in a vacuum or in presence of carbonic acid gas. If one of the spores of the splenic fever bacillus (for it also produces spores) could germinate, the product of the germination, deprived of free oxygen, would at once perish. And, to mention in passing a very ingenious experiment of Pasteur's, we thus obtain a means of separating by culture the bacillus o
fessors grew angry, and affirmed that this assertion of Pasteur's was incorrect; that this sheep's blood had been studied with care, and that no filaments had been found in it except those of splenic fever; and it would, moreover, be marvellous, they added ironically, that Pasteur from the depths of his laboratory in Paris should be able to assert that this blood was mixed with septic poison, whilst they, good observers, armed with a microscope, had had this sheep's blood under their eyes. Pasteur contented himself with replying that his assertion rested upon a principle, and that he was perfectly able, without having seen the blood of the sheep, to affirm that under the conditions in which it had been collected tha
s of assertion is only equalled by his diffidence when he has not experiment to back him up. He never fights except on ground with which he has made himself familiar, but then
my of Medicine, who a short time after the incident just related was proposing
er, a considerable number of motionless filaments, simple or jointed, transparent, straight, or bent, which belonged to the genus Leptothrix. Engaged in studies on puerperal fever, and having never met with a fact of this kind in his researches,
at he did not dispute the affirmation, but that he proposed to con
had them placed in a cage and sent by rail to the professor. They arrived the following morning and died twenty-four hours afterwards under the doctor's own eyes. The first had been inoculated with the infectious blood of the dead woman, the second with the bacterium of splenic fever blood from Ch
the one hand, to diagnose the formidable complication which had manifested itself in the woman who died on April 4, 1878, and, on the other hand, to have traced out the mode of contamination which now eluded him. He had, how
giving a certain depth to the liquid-say, a centimeter of depth. In some hours, if examined with the microscope, the following curious spectacle will be witnessed: In the upper layers the oxygen of the air is absorbed, which is manifested by the already changed colour of the liquid. There the filamentous vibrio dies, and disappears under the form of fine amorphous granulations deprived of virulence. At the bottom of this layer of one centimeter in thickness, on the contrary, the vibrios, protected from the approach of oxygen by those of their own kind which have perished above them, continue to multiply by fission until by degrees they pass into the state of s
of a living microscopic organism-in other words, with a true ferment. By the side of the parasite of splenic fever we have thus a fresh example of a living animated virus, with germs forming dust. And the extraordinary thing is t