icon 0
icon TOP UP
rightIcon
icon Reading History
rightIcon
icon Log out
rightIcon
icon Get the APP
rightIcon

The Story of Germ Life

Chapter 2 MISCELLANEOUS USE OF BACTERIA IN THE ARTS.

Word Count: 6688    |    Released on: 29/11/2017

e somewhat definite kinds of food, and have therefore rather narrow conditions of life, but the majority may live upon a great variety of organic compounds. As they con

the original food molecules. Such products are in general called decomposition products, or sometimes cleavage products. Sometimes, however, the bacteria have, in addition to their power of pulling their food to pieces, a further power of building other compounds out of the fragments, thus building up as well as pulling down. But, however they d

hich arise as the result of this series of chemical changes are of an importance in the world which we are only just beginning to appreciate. In our attempt to outline the agency which bacteria play in our industries and in natura

maceration industries, all of which are based upon the decomposition powers of bacteria. Hardly any animal or vegetable sub

D FROM POWERS O

done through the aid of bacteria. The flax stems, after proper preparation, are exposed to the action of moisture and heat, which soon develops a rapid bacterial growth. Sometimes this is done by simply exposing the flax to the dew and rain and allowing it to lie thus exposed for some time. By another process the stems are completely immersed in water and allowed to remain for ten to fourteen days. By a third process the water in which the flax is immersed is heated from 75 degrees to 90 degrees F., with the addition of certain chemicals, for some fifty to sixty hours. In all cases the effect is the same. The moisture and the heat cause a growth of bacteria which proceeds with more or less rapidity according to the temperature and other conditions. A putrefactive fermentation is thus set up which

brous material. As in the case of linen, a fermentation by bacteria is depended upon as a means of softening the material so that the fibres can be disassociated. The process is called "retting," as in the linen manufacture. The details of the process are somewhat different. The jute is commonly fermented in tanks of stagnant wa

hemp plant contains some long flexible fibres with others of no value, and bacteri

ime, six months or a year being required. By this time the husk has become so softened that it can be beaten until the fibres separate and can be removed. They are subsequently

re is decidedly injured by the softening effect of the fermentation. It is quite probable that, even as commonly carried on, the fermentation has some slight injurious effect upon the fibre, and that if some purely mechanical means could b

softer parts of the animal, and to fit the sponge for use this softer organic material must be got rid of. It is easily accomplished by rotting. The fresh sponges are allowed to stand in the warm sun and very rapidly decay. Bacte

e hair removed together with the outer skin. The hide for this purpose must be moistened and softened. In some tanneries this is done by steeping it in chemicals. In others, however, it is put into water and slightly heated until fermentation arises. The fermentation softens it so that the outer skin can be e

he making of skeletons the process of maceration is commonly used as an aid. The maceration consists simply in allowing the skeleton to soak in water for a day or

is pressed from the fruit and then allowed to ferment. The fermentation aids in separating a mucilaginous mass and making it thus possible to obtain the citric a

FROM THE PRODUCTS

, the same species of bacteria may give rise to different products when growing in different food materials. Some of the compounds produced by such processes are poisonous, others are harmless. Some are gaseous, others are liquids. Some have peculiar odours, as may be recognised from the smell arising from a bit of decaying meat. Others have peculiar tastes, as may be realized in the gamy taste of meat which is in the incipient stages of putrefaction. By purely empirical means mankind has learned methods of encouraging the development of some of these products, and is t

HE FERMENTATI

ial quantities produced only by yeasts. Hence it is that, although the fermentations produced by bacteria are more common in Nature than those produced by yeasts and give rise to a much larger number of decomposition products, still their commercial aspect is decidedly less important than that of yeasts. Nevertheless, bacteria are not without their importance in the ordinary fermentative processes. Although they are of no importance as aids in the common fermentative processes, they are not infrequently the cause of much trouble. In the fermentation of malt to produce beer, or grape juice to produce wine, it is the desire of the brewer and vintner to have this fermentation produced by pure yeasts, unmixed with bacteria. If the yeast is pure the fermentation is uniform and successful. But the brewer and vintner have long known that the fermentation is frequently interfered with by irregularities. The troubles which arise have long been known, but the bacteriologist has finally discovered their cause, and in general their remedy. The cause of the chief troubles which arise in the fermentation is the presence of contaminating bacteria among the yeasts. These bacteria have been more or less carefully studied by bacteriologists, and their effect upon the beer or wine determined.

, which are directly dependent upon bacterial action, Some of them we should unhesitatingly look upon

NE

always used as the source of the acetic acid. The production of acetic acid from alcohol is a simple oxidation. The equation C2H6O + O2 = C2H4O2 + H2O shows the chemical change that occurs. This oxidation can be brought about by purely chemical means. While alcohol will not readily unite with oxygen under common conditions, if the

e in contact with air, they slowly turn sour by the gradual conversion of the alcohol into acetic acid. At the close of the process practically all of the alcohol has disappeared. Ordinarily, however, not all of it has been converted into acetic acid, for the oxidation does not a

us the cause of the oxidation of alcohol, and this was named Mycoderma aceti. But further study has shown that several have the power, and that even in the commercial manufacture of vinegar several species play a part (Fig. 18), although the different species are not yet very thoroughly studied. Each appears to act best under different conditions. Some of them act slowly, and others rapidly, the slow- growing species appearing to produce the larger amount of acid in the end. After the amount

rs to be an error. It is always found necessary in this method to start the process by pouring upon the shavings some warm vinegar. Unless in this way the shavings become charged with the vinegar-holding bacteria the alcohol will not undergo oxidation during its passage over them, and after the bacteria thus introduced have grown enough to coat the shavings thoroughly the acetic-acid production is much more rapid than at first. If vinegar is allowed to trickle slowly down a suspended string, so that its bacteria may distribute themselves through the string, and then alcohol be allowed to trickle over it in

the flavour of the vinegar is liable to suffer from such causes. As yet our vinegar manufacturers have not applied to acetic fermentation the same principle which has been so successful in brewing-namely, the use, as a starter of the fermentation, of a pure culture of the proper species of bacteria. This has been

IC A

milk sugar. Any sample of sour milk may therefore always be depended upon to contain plenty of lactic organisms. In its manufacture for commercial purposes milk is sometimes used as a source, but more commonly other substances. Sometimes a mixture of cane sugar and tartaric acid is used. To start the fermentation the mixture is inoculated with a mass of sour milk or decaying cheese, or both, such a mixture always containing lactic organisms. To be sure, it also contains many ot

different kinds of lactic acid. They differ from each other in the relations of the atoms within their molecule, and in their relation to polarized light, some forms rotating the plane of polarized light to

RIC

se of the last two acids, its commercial manufacture is based upon bacterial action. Quite a number of species of bacteria can produce butyric acid, and they produce it from a variety of different sources. Butyric acid is a common ingredient in old milk and in butter, and its formation by bacteria was historically one

PREPA

mentation the part of the plant which is the basis of the indigo is separated from the leaves and dissolved in the water; and as a second feature of the fermentation the soluble material is changed in its chemical nature into indi

ced in sterile water no fermentation occurs and no indigo is formed. If, however, some of the specific bacteria are added to the mass the fermentation soon begins and the blue colour of the indigo makes its appearance. It is plain, therefor

IN TOBACC

gain in such a way that the portion which was first at the bottom comes to the top, and in this way all parts of the heap may become equally affected by the process. After this process the tobacco is sent to the different manufacturers, who finish the process of curing. The further treatment it receives varies widely according to the desired product, whether for smoking or for snuff, etc. In all cases, however, fermentations play a prominent part. Sometimes the leaves are directly inoculated with fermenting material. In the preparation of snuff the details of the process are more complicated than in the preparation of smoking tobacco. The tobacco, after being groun

henomena play an important part in them. Nevertheless, from the moment when the tobacco is cut in the fields until the time it is ready for market the curing is very intimately associated with bacteria and f

to prevent the growth within it of undesirable organisms. The preparation of tobacco is for this reason a delicate operation, and one that will be very likely to fail unless the greatest care is taken. In the several fermentative processes which occur in the preparation there is no question that micro-organisms aid the tobacco producer and manufacturer. Bacteria produce the first fermentation that follows the drying, and it is these organisms too, in large measure, that give rise to all the subsequent fermentations, although seemingly in some cases purely chemical processes materially aid. Now the special quality of the tobacco is in part dependent upon the peculiar type of fermentation which occurs in one or another of these fermenting actions. It is the fermentation that gives rise to the peculiar flavour and to the aroma of the diffe

or the fermentation of tobacco. If it is true that the flavour of high grade tobacco is in large measure, or even in part, due to the action of the peculiar microbes from the soil where it grows, it ought to be possible to produce similar flavours in the leaves of tobacco grown in other localities, if the fermentation of the leaves is carried on by means of the pure cultures of bacteria obtained from the high grade tobacco. Not very much has been done or is known in this connection as yet. Two bacteriologists have experimented independently in fermenting tobacco leaves by the action

in large measure dependent upon the character of the fermentations that occur at different stages of the curing. It seems certain also that these fermentations are wholly or chiefly produced by microorganisms, and that the character of the fermentation is in large measure dependent upon the species of micro-organisms that produce it. If these are facts, it would seem not improbable that a further study

ubtedly to the soils and the climatic conditions in which they grow, and these, of course, will never be affected by changing the character of the ferment active processes. It is, however, probable that in so far as the flavours that distinguish the high and low grades of tobacco are due to the character of the fermentative pro

IU

ng of tobacco. Apparently it is a fermentation due to the growth of microorganisms. The organisms in question are not, however, bacteria in this case,

OME FERM

pecies of bacteria to gain access to the tobacco at some stage of the curing and by their growth give rise to various troubles. It is the ubiquitous presence of bacteria which makes it impossible to preserve fruits, meats, or vegetables for any length of time without special methods. This fact in itself has caused the development of one of our most important industries. Canning meats or fruits consists in nothing more than bringing them into a condition in which they will be preserved from attack of these micro-organisms. The method is extremely simple in theory. It is nothing more than heating the material to be preserved to a high temperature and then sealing it hermetically while it is still hot. The heat kills all the bacteria which may chance to be lodged in it, and the hermetical sealing prevents other bacteria from obtaining access. Inasmuch as all organic decomposition is produced by bacterial growth, such sterilized and sealed material will

here. But commonly our aim must be to prevent the growth of bacteria in foods. Foods must be dried or cooked or kept on ice, or some other means adopted for preventing bacterial growth in them. It is their presence that forces us to keep our ice box, thus founding the ice busin

Claim Your Bonus at the APP

Open