icon 0
icon TOP UP
rightIcon
icon Reading History
rightIcon
icon Log out
rightIcon
icon Get the APP
rightIcon

The Story of Germ Life

Chapter 5 PARASITIC BACTERIA AND THEIR RELATION TO DISEASE.

Word Count: 9710    |    Released on: 29/11/2017

est. This is the side of the subject that first attracted attention, has been most studied, and in regard to which there has been the greatest accumulation of evi

wing microbes in drinking water or milk is decidedly repugnant and alarming. In the public mind

capable of doing us any injury, the pathogenic bacteria, are really very few compared to the great host of species which are harmless. A small number of species, perhaps a score or two, are pathogenic, while a much larger number, amounting to hundreds and perhaps thousands of species, are perfectly harmless. This latter class do no injury even though swallowed by man in thousands.

a number of different ways. We may recognise two different classes among them, which, however, we shall see are connected by intermediate types. These two classes are, first, the pathogenic bacteria, which are not strictly parasitic but l

CH BACTERIA P

ce an oxidation of the body tissues, or that they produce a reduction of these tissues, or that they mechanically interfere with the circulation None of these suggestions have proved of much value Another view was early advanced, and has stood the test of time. This claim is that the bacteria while growing in the body produce poisons, and these poisons then have a direct action on the body We have already noticed that bacteria during their growth in an

the animals. The chief difference in the results from inoculating an animal with the poison and with the living bacteria is in the rapidity of the action. When the poison is injected the poisoning symptoms are almost immediately seen, but when the living bacteria are inoculated the effect is only seen after several days or longer, not, in short, until the inoculated bacteria have had time enough to grow in the body and produce the poison in quantity. It has not by any

WHICH ARE NOT S

owed as man's food, it is plain that evil results might follow. If such food is swallowed by man after the bacteria have produced their poisonous bodies, it will tend to produce an immediate poisoning of his system. The effect may be sudden and severe if considerable quantity of the poisonous material is swallowed, or slight but protracted if small quantities are repeatedly consumed in food. Such instances are not uncommon. Well-known examples are cases of ice-cream poisoning, poisoning from eating cheese or from drinking milk, or in not a few instances from eating fish or meats within which b

tinue to be developed as long as the bacteria continue to grow, whether in a milk pail or a human stomach. If now the poisons are absorbed by the body, they may produce a mild or severe disease which will be more or less lasting, continuing perhaps as long as the same food and the same bacteria are supplied to the individual. The most important disease of this class appears to be the dreaded cholera infantum, so common among infants who feed upon cow's milk in warm w

traced to their source would be found to be produced by bacterial poisons swallowed with food or drink, or by similar poisons produced by bacteria growing in such food after it is swallowed by the individual. In hot weather, when bacteria are so abundant everywhere and growing so rapidly, it is impossible to avoid such dangers completely wit

ERIA WHICH ARE

ecretes or in some way produces extremely violent poisons. These poisons are then absorbed by the body and give rise to the general symptoms of the disease. Much the same is true of the bacillus which causes tetanus or lockjaw (Fig. 29). This bacillus is commonly inoculated into the flesh of the victim by a wound made with some object which has been lying upon the earth where the bacillus lives. The bacillus grows readily after being inoculated, but it is localized at the point of the wound, without invading the tissue to any extent. It produces, however, during its growth several poisons which have been separated and studied. Among them are some of the most violent poisons of which we have any know

invade the body generally, however, but become somewhat localized in special glands like the liver, the spleen, etc. Even here they do not appear to find a very favourable condition, for they do not grow extensively in these places. They a

la, white swelling, lupus, etc. (Fig. 31). Although this bacillus is very common and is able to attack almost any organ in the body, it is usually very restricted in growth. It may become localized in a small gland, a single joint, a small spot in the lungs, or in the glands of the mesentery, the other parts of the body remaining free from infection. No

e of this sort is anthrax or malignant pustule, a disease fortunately rare in man (Fig. 32). Here the bacilli multiply in the blood, and very soon a general and fatal infection of the whole body arises, resulting from the abunda

Differences in the nature of these poisons produce differences in the character of the disease, and differences in the parasitic power

ES ARE DUE

disease in healthy animals by inoculating them with the bacterium. All of these steps of proof present difficulties, but especially the last one. In the study of animals it is comparatively easy to reproduce a disease by inoculation. But experiments upon man are commonly impossible, and in the case of human diseases it is frequently very difficult or impossible to obtain the final test of the matter. After finding a specific bacterium associated with a disease, it is usually possible to experiment with it further upon animals only. But some human diseases do not att

, inflammation of wounds, or formation of pus from slight skin wounds-indeed, a host of miscellaneous troubles, ranging all the way from a slight pus formation to a violent and severe blood poisoning-all appear to be caused by bacteria, and it is impossible to make out any definite species associated with the different types of these troubles. There are three common forms of so-called pus cocci, and these are found almost indiscriminately with various types of inflammatory troubles. Moreover, these species of bacteria are found with almost absolute constancy in and around the body, even in health. They are on the clothing, on the skin, in the mouth and alimentary canal. Here they exist, commonly doing no harm. They have, however, the power of doing injury if by chance they get into wounds. But their power of doing injury varies both with the condition of the individual and with variations in the bacteria themselves. If the individual is in a good condition of health these bacteria have little power of injuring him even when they do get into such wounds, while at times of feeble vitality they may do much more injury, and take the occasion of any little cut or bruise to enter under the skin and give rise to inflammation and pus. Some people will develop slight

st twenty years or more have disclosed some definite relations of bacteria and disease, and a list of the diseases more or less def

me of bacterium pro

nt pustule). Bac

rillum chole

a. Micrococcus pn

. Bacillus

. Bacill

Micrococcu

Bacillus of

Bacillu

ver. Spirill

ckjaw). Bac

losis (

fula, etc.) Bacil

Bacillus typh

hey are found almost indiscriminately in any of these wound infections, and none of them appears to have any definite relation to any special form of disease unless it be the micrococcus of erysipelas. The

are with more or less certainty regarded as caused by distinct specific bacteria:

been demonstrated to be caused by these organisms. In addition, quite a number of species of bacteria have been found in such material as faeces, putrefying blood, etc., which have been shown by experiment to be capable of producing diseases in a

OF PATHOGE

and we recognise other factors influencing disease besides the actual presence of the bacterium. These we may briefly consider under two head

wers if it is cultivated for a considerable period at a high temperature. The micrococcus which causes fowl cholera loses its power if it be cultivated in common culture media, care being taken to allow several days to elapse between the successive inoculations into new culture flasks. Most pathogenic bacteria can in some way be so treated as to suffer a diminution or complete loss of their powers of producing a fatal disease. On the other hand, other conditions will cause an increase in the virulence of a pathogenic germ. The virus which produces hydrophobia is increased in violence if it is inoculated into a rabbit and subsequently taken from the rabbit for further inoculation. The fowl cholera micrococcus, which

ITY OF THE

e the significance of this fact many valuable and interesting discoveries have been made. After the exposure to the disease there follows a period of some length in which there are no discernible effects. This is followed by the onset of the disease and its development to a crisis, and, if th

his clothing or some objects he has handled, etc. Occasionally, perhaps, the bacteria may get into the skin from the air, but this is certainly uncommon and confined to a few diseases. There are here two facts of the utmost importance for every one to understand: first, that the chance of disease bacteria being carried to us through the air is very slight and confined to a few diseases, such as smallpox, tuberculosis, scarlet fever; etc., and, secondly, that the uninjured skin and the uninjured mucous membrane also is almost a sure protection against the invasion of the bacteria. If the skin is whole, without bruises or cuts, bacteria can seldom, if ever, fi

ng food cooked or raw, and upon the condition of his skin and mucous membranes, since any kind of bruises will increase susceptibility. Slight ailments, such as colds, which inflame the mucous membrane, will decrease its resisting power and render the individual more susceptible t

times they are all destroyed without being able to gain a foothold. In such cases, of course, no trouble results. In other cases the body fails to overcome the powers of the invaders and they eventually multiply rapidly. In this struggle the success of the invaders is not necessarily a matter of numbers. They are simply struggling to gain a position in the body, where they can feed and grow. A few individuals may be entirely sufficient to seize such a foothold, and then these by multiplying may soon become indefinitely numerous. To prot

hods of defence are, however, already intelligible to us, and we know enough, at all events, to give us an idea of the intensity of the

l be dead, but living human flesh and blood in some way exerts a repressing influence upon them which is fatal to the growth of a vast majority of species. Some few species, however, are not thus destroyed by the hostile agencies of the tissues of the animal, but are capable of growing and multiplying in the living body. These alone are what constitute the pathogenic bacteria, since, of course, these are the only bacteria which can p

blood of animals. Of their nature we know very little, but of their repressing influence upon bacterial growth we are sure. They have been named alexines, and they are produced in the living tissue, although as to the method of their production we are in ignorance. By the aid of these poisons the body is able to prevent the growth of the vast majority of bacteria which get into its tissues. Ordinary micro-organisms are killed at once, for these alexines act as antiseptics, and common bacteria can no more grow in the living body than they could in a solution cont

tempt of the individual to get rid of them. These, of course, constitute the pathogenic species, or so called "disease germs". On

e body by producing in their turn certain other products which neutralize the alexines, thus annulling their action. These pathogenic bacteria, when they get into the body, give rise at once to a group of bodies which have been named lysines. These lysines are as mysterious to us as the alexines, but they neutralize the effect of the alexines and thus overcome the resistance the body offers to bact

e quantities. They are active cells, capable of locomotion and able to crawl out of the blood-vessels Not infrequently they are found to take into their bodies small objects with which they come in contact. One of their duties is thus to engulf minute irritating bodies which may be in the tissues, and to carry them away for excretion. They thus act as scavengers These corpuscles certainly have some agency in warding off

3 c, d, e). This idea gave rise to the theory of phagocytosis, and the corpuscles were consequently named phagocytes. The study of several years has, however, made it probable that this is not the ordinary method by which the corpuscles destroy the bacteria. According to our present knowledge the method is a chemical one. These cells, when they thus collect i

the phagocytes prove too strong for the invaders, the bacteria are gradually all destroyed, and the attack is repelled. Under these circumstances the individual commonly knows nothing-of the matter. This conflict has taken place entirely without any consciousness on his part, and he may not even know that he has been exposed to the attack of the bacteria. In other cases the bacteria prove too strong for the phagocytes. They multiply too rapidly, and sometimes they produce secretions which actually driv

ecently been an object of investigation, and we are as yet in the dark in regard to many of the facts. The future may require us to modify to some extent even the brief outline which has been given. But while we recognise this uncertainty in the details, we may be assured of the general facts. The living body has some very efficacious resistant forces which prevent most bacteria from growing within it

se bodily activities are weakened by poor nutrition can offer less resistance. The question whether one shall suffer from a germ disease is not simply the question whether he shall be exposed, or even the question whether the bacteria shall find entrance into his body. It is equally dependent upon whether he has the bodily vigour to produce alexines in proper

FROM GERM

ed and take entire possession of the body. As they become more numerous their poisonous products increase and begin to produce direct poisoning effects on the body. The incubation period is over and the disease co

, why do they not always continue to multiply until they produce sufficient poison to destroy the life of the individu

s derived may be very temporary, as in the case of diphtheria. But a certain amount of resistance appears to be always acquired. This power of resisting the activities of the parasites seems to be increased during the progress of the disease, and, if it becomes sufficient, it finally drives off the bacteria before they have produced death. After this, recovery takes place. To what this newly acquired resisting power is due is by no means clear to bacteriologists, although certain factors are already known. It appears beyond question that in the case of certain diseases the cells of the body after a time produce substances which serve as antidotes to the poisons produced by the bacteria during their growth in the body-antitoxines. In the case of diphtheria, for instance, the germs growing in the throat produce poisons which are absorbed by the body and give rise to the symptoms of the disease; but after a time the body cells react, and themselves produce

entirely too much to claim that this is the method of recovery in all cases. We may say, however, in regard to bacterial diseases in general, that after the bacteria enter the body at some weak point they have first a battle to fight with the resisting powers of the body, which appear to be partly biological and partly chemical. These resisting powers are in many cases entirely sufficient to prevent the bacteria from obtaining a foothold. If the invading host

y do they produce different results in different animals; not only do the different pathogenic species differ much in their power to develop serious disease, but the different species are very particular as to what species of animal they attack. Some of them can live as parasites in man alone; some can live as parasites upon man and the mouse and a few other animals; some can live in various animals but not in man; some appear to be able to

the character of the poisons they produce, as well as in their power of overcoming the resisting powers of the body. They differ at different times in their powers of producing disease. In short, they show such a large numb

BY OTHER ORGANIS

caused by the bacteria which we have been studying in the previous chapters, there are some whose inciting cause is to be found among organisms belonging to other groups. Some of these are plants of a higher organization than bacteria, but others are undoubtedly microscopic

he causes assigned to it. At one time it was thought to be the result of the growth of a bacterium, and a distinct bacillus was described as producing it. It has finally been shown, however, to be caused by a microscopic organism belonging to the group of unicellular animal

man and finds its way into the blood. Here it attacks the red blood-corpuscles, each malarial organism making its way into a single one (Fig. 340). Here it now grows, increasing in size at the expense of the substance of the corpuscle. As it becomes larger it becomes granular, and soon shows a tendency to separate into a number of irregular masses. Fina

ism. Corresponding to this life history of the organism, the disease malaria is commonly characterized by a decided intermittency, periods of chill and fever alternating with periods of intermission in which these symptoms are abated. The paroxysms of the disease, characterized by the chill, occur a

forty- eight hours; another variety appears to require three days for its growth; while still another variety appears to be decidedly irregular in its period of growth and sporulation. These facts readily explain some of the variations in the disease. Certain other irregularities appear to be due to a diffe

he drug be present in the blood at the time when the spores are set free from the blood-corpuscle, they are rapidly killed by it before they have a chance to enter another corpus

through other stages of a metamorphosis in the bodies of other animals. Most parasitic animals have two or more hosts upon which they live, alternating from one to the other, and that such is the case with the malarial parasite is at least proba

ndividuals. The malarial organism is not discharged from the body in any way, and hence is not contagious. If the parasite does pass part of its history in some other animal than man, there must be some means by which it passes from man to its other host. It has been suggested that some of the insects w

f these diseases. The only one of very common occurrence is a species known as Amaeba coli, which is found in cases of dysentery. In a certain type of dysentery this organism is so

pt to attack the skin. They grow in the skin, particularly under the hair, and may send their threadlike branches into some of the subdermal tissues. This produces irritation and inflammation of the skin, resulting in trouble, and making sores difficult t

Claim Your Bonus at the APP

Open