icon 0
icon TOP UP
rightIcon
icon Reading History
rightIcon
icon Log out
rightIcon
icon Get the APP
rightIcon

Darwiniana

Chapter 3 The Past Condition Of Organic Nature

Word Count: 6664    |    Released on: 06/12/2017

posal would permit, the present condition of organic nature, meaning by that large title simply an indication of the great, broad, and

educed to a comparatively few primitive plans or types of construction; that a further study of the development of those different forms revealed to us that

, and returning them back to the inorganic world, in what we spoke of as its waste; and that finally, when the animal ceased to exist, the constituents of its body were dissolved and transmitted to that inorganic world whence they had been at first abstracted. Thus we saw in both the blade of grass and the horse but the same elements differently combined and arranged. We discovered a continual circulation going on,--the plant drawing in the elements of inor

ing subjected to the same minute analysis as the constituents of those beings themselves--that they were correlative with--that they were the equival

f organic nature. We have, to-night, to deal with the facts of that history--a history involving periods of time before which our mere human records sink into utter insignificance--a hi

ch have been drawn from that evidence. So, here we must pass, in the first place, to the consideration of a matter which may seem foreign to the question under discussion. We must dwell upon the nature of the records, and the credibility of the evidence they contain; we must look to the completeness or incompleteness of those records themselves, before we turn

, there are other difficulties--difficulties in rightly interpreting the facts as they are presente

self into a question of the formation of mud. You may think, perhaps, that this is a vast step--of almost from the sublime to the ridiculous--from the contemplation of the history of the past ages of the world's existence to the consideration of the history

ubside and rest. For the ocean, urged by winds, washes, as we know, a long extent of coast, and every wave, loaded as it is with particles of sand and gravel as it breaks upon the shore, does something towards the disintegrating process. And thus, slowly but surely, the hardest rocks are gradually ground down to a powdery substance; and the mud thus formed, coarser or finer, as the case may

in precisely the same way as the wearing action of the sea waves. The matters forming the deposit are torn from the mountain-side and whirled impetuously into the valley, more slowly over the plain, thence into the estuary, and from the estuary they are swept into the sea. The coarser and hea

ment of mud, the mud will be carried down, and, at length, deposited in the deeper parts of this sea bottom, where it will form a layer; and then, while that first layer is hardening, other mud which is coming from the same source will, of course, be carried to the same

spot in exactly the ratio of their depth from the surface. So that if they were upheaved afterwards, and you had a series of these different layers of mud, converted into sandstone, or limestone, as the case mi

tion of the chronology, the fixing of the time which it has taken to form this crust is a comparatively simple matter. Take a broad average, ascertain how fast the mud is deposited upon the bottom of the sea, or in the estuary of rivers; take it to be an inch, or two, or three inches a year, or whatever you may roughly estimate it at; then take

of finding how rapidly sediments are deposited; but the main difficulty--a difficulty which renders any certain calculati

in common parlance, the very emblem of fixity itself, it is incessantly moving, and is, in fact, as unstable

ser sediments that are carried down by the current of the river, will only be carried out a certain distance, and

no deposit is going on. Now, suppose that the whole land, C, D, which we have regarded as stationary, goes down, as it does so, both A and B go further out from the shore, which will be at y1; x1, y1, being the new sea-level. The consequence will be t

w, as a record of time in the manner in which we are now regarding this subject, as it would giv

fect of that movement? Why, that the sediment A and B which has been already deposited, would eventually be brought nearer to the shore-level and again subjected to the wear

at you see it is absolutely necessary from these facts, seeing that our record entirely consists of accumulations of mud, superimposed one on the other; seeing in the next place that any particular spots on which accumulations have occurred, have been constantly moving up and down, and sometimes out of the reach of a deposit, and at other times its own deposit broken up and carried away, it follows that our record must be in the h

ons, to say nothing of the minute period during which he has cultivated geological inquiry. So that three-fifths of the surface of the earth is shut out from us because it is under the sea. Let us look at the other two-fifths, and see what are the countries in which anything that may be termed searching geological inquiry has been carried out: a good deal of France, Germany, and Great Britain and Ireland, bi

from the nature of things, that that record should be of the most fragmentary and imperfect character. Unfortunately this circumstance has been constantly forgotten. Men of science, like young colts in a fresh pasture, are apt to be exhilarated on being turned into a new field of inquiry, to go off at a hand-gallop, in total disregard of hedges and ditches, to lose sight of the real limitation of their inquiries, and to forget the extreme imp

not only have a precise knowledge of the events which have occurred at any particular point, but that we

ttom of those lakes. Now, there is not a shadow of doubt that in these two lakes the lower beds are all older than the upper--there is no doubt about that; but what does this tell us about the age of any given bed in Loch Lomond, as compared with that of any given bed in the Lake of Killarney? It is, indeed, obvious that if any two sets of deposits are separated and

ed, this reasoning may involve an entire fallacy. It is extremely possible that a may have been deposited ages before b. It is very easy to understand how that can be. To return to Fig. 4; when A and B were deposited, they were substantially contemporaneous; A being simply the finer deposit, and B the coarser of the same detritus or waste of land. Now suppose that that sea-bottom goes down (as shown in Fig. 4), so that the first deposit is carried no farther than a, forming the bed A1, and the coarse no farther than b, forming the bed B1, the result will be the formation of two continuous beds, one of fine sediment (A A1) over-lapping another of coarse sediment (B B1). Now suppose the whole sea-bottom is raised up, an

difficulty; the fact is, that the great mass of deposits have taken place in sea-bottoms wh

t. The error lies in extending a principle which is perfectly applicable to deposits

one vertical section. I do not mean to tell you that there are no qualifying circumstances, so that, even in very considerable areas, we may safely speak of conformably superimposed beds being older or younger than others a

ch for the conditions to be observed in interpreting it, and its chronological

tures living at the bottom of the sea. These creatures, like all others, sooner or later die, and their shells and hard parts lie at the bottom; and then the fine mud which is being constantly brought down by rivers and the action of the wear and tear of the sea, covers them over and protects them from any further change or alteration; and, of course, as in process of time the mud becomes hardened and solidified, the shells of these animals are pre

s, or die in places where their bodies are not afterwards protected by mud. There are other animals existing on the sea, the shells of which form exceedingly large deposits. You are probably aware that before the attempt was made to lay the Atlantic telegraphic cable, the Government employed vessels in making a series of very careful observations and soundings of the bottom of the Atlantic; and although, as we must all regret, that up to the present time that project has not succeeded, we have the satisfaction of knowing that it yielded some most remarkable results to science. The Atlantic Ocean had to be sounded right across, to depths of several miles in some places, and the nature of its bottom was carefully ascertained. Well, now, a space of about 1,000 miles wide from east to west, and I do not exactly know how

, and other animals--without any hard parts, of which we cannot reasonably expect to find any traces whatever: there is nothing of them to preserve. Within a very short time, you will have noticed, after they are removed from the water, they dry up to a mere nothing; certainly they are not of a nature to leave any very visible traces of their existence on such bodies as chalk or mud. Then again, look at land animals; it is, as I have said, a very uncommon thing to find a l

s of holes in some pieces of rock, and nothing else. Those holes, however, had a certain definite shape about them, and when I got a skilful workman to make castings of the interior of these holes, I found that they were the impressions of the joints of a backbone and of the armour of a great reptile, twelve or more feet long. This great beast had died and got buried in the sand; the sand had gradually hardened over the bones, but remained porous. Water had trickled

There is a limestone formation near Oxford, at a place called Stonesfield, which has yielded the remains of certain very interesting mammalian animals, and up to this time, if I recollect rightly, there have been found seven specimens of its lower jaws, and not a bit of anything else, neither limb-bones nor skull, nor any part whatever; not a fragment of the whole system! Of course, it would be preposterous to imagine that the beasts had nothing else but a lower jaw! The probability is, as Dr. Buckland showed, as the result of his observations on dead dogs in the river Thames, that the lower jaw, not being secured by very firm ligaments to the bones of the head, and being a weighty affair, would easil

because, otherwise, you might have been led to think differently of th

irty or forty thousand different species of fossils have been discovered. You have no more ground for doubting that these creatures really lived and died at or

is to examine how much the extinct Flora and Fauna as a whole--disregarding altogether the succession of their constituents, of which I shall speak afterwards--differ from t

ose of the present forms of life, and I doubt very much whether your uninstructed eyes would lead you to see any vast or wonderful difference between the two. If you looked closely, you woul

de the animal kingdom into orders you will find that there are above one hundred and twenty. The number may vary on one side or the other, but this is a

animals is a sort of way of comparing the past creation as a whole with the present as a whole. Among the mammalia and birds there are none extinct; but when we come to the reptiles there is a most wonderful thing: out of the eight orders, or thereabouts, which you can make among reptiles, one-half are extinct. These diagrams of the plesiosaurus, the ichthyosaurus, the pterodactyle, give you a notion of some of these ex

There is not known to be a single ordinal form of insect extinct. There are only two orders extinct among the Crustacea. There is not known to be an extinct order of these creatures, the parasitic

or a dozen which cannot be arranged with those of the present day; that is to say, that the difference does not amount to much more than ten per cent.: and the proportion of extinct orders of plants is still smaller. I think that that is a very astounding a most

in that stratum and not in the others. First, I should come upon beds of gravel or drift containing the bones of large animals, such as the elephant, rhinoceros, and cave tiger. Rather curious things to fall across in Piccadilly! If I should dig lower still, I should come upon a bed of what we call the London clay, and in this, as you will see in our gallerie

urface to the lowest depths of the earth's crust, the forms of animal life and vegetable life which I should meet with in the successive beds would, looking at them broadly, be the more different the further that I went down. Or, in other words, inasmuch as we started with the clear principle, that in a series

Claim Your Bonus at the APP

Open