icon 0
icon TOP UP
rightIcon
icon Reading History
rightIcon
icon Log out
rightIcon
icon Get the APP
rightIcon

Darwiniana

Chapter 2 The Present Condition Of Organic Nature

Word Count: 6379    |    Released on: 06/12/2017

hat I could not do better than endeavour to put before you in a true light, or in what I might perhaps with more modesty call, that which I conceive myself to

port and some by another kind of report; the attention of all and the curiosity of all have been probably more or less excited on the subject of that work. All I can do, and all I shall attempt to do, is to put befor

you are naturalists; and, even if you were, the misconceptions and misunderstandings prevalent even among naturalists, on these matters, would make it desirable that I should take the course I now propose to take,--that I should start from the beginning,--that I should endeavour to point out what is the existing state of the organic world--that I should point out its past condition,--that I should state wha

ist us. In an argument of this kind we must go further and dig deeper into the matter; we must endeavour to look into the foundations of living Nature, if I may so say, and discover the principles involved in some of her most secret operations. I propose, therefore, in the first place, to take some ordinary animal with which you are all familiar, and by easily comprehensible and obvious examples drawn from it, to show what are the kind of problems which living beings in general lay before us; and I shall then show you that the same problems are laid open to us by all kinds of living beings. But, first, let me say in what

h to understand all about the horse. Our first object must be to study the structure of the animal. The whole of his body is inclosed within a hide, a skin covered with hair; and if that hide or skin be taken off, we find a great mass of flesh, or what is technically called muscle,

h, you have a great series of bones, hard structures, bound together

and running through the neck-bones, along the spine, and ending in the tail, containing the brain and the spinal marrow, which are extremely important organs. The second great cavity, commencing with the mouth, contains the gullet, the stomach, the long intestine, and all the rest of those internal apparatus which are essential for digestion; and then in the same great cavity, there are lodged the heart and all the great vessels going from it; and, besides that, the organs of respiration--the lungs: and then the kidneys,

ee what we can make of them. We shall find that the flesh is made up of bundles of strong fibres The brain and nerves, too, we shall find are made up of fibres, and these queer-looking things that are called ganglionic corpuscles. If we take a slice of the bone and examine it, we shall find that it is very like this diagram of a section of the bone of on ostrich, though differing, of course, in some details; and if we take any part whatsoever of the tissue, and examine it, we shall find it all has a minute structure, visible only under the microscope. All these parts constitute microscopic anatomy or "Histology." These parts are constantly being changed; every part is constantly growing, decaying, and being replaced during the life of the animal. The tissue is constantly replaced by new material; and if you go back to the young state of the tissue in the case of muscle, or in the case of skin, or any of the organs I have mentioned, you will find that they all come under the same condition. Every one of these microscopic filaments and fibres (I now speak merely of the general c

may be, or munching the oats in his stable. What is he doing? His jaws are working as a mill--and a very complex mill too--grinding the corn, or crushing the grass to a pulp. As soon as that operation has taken place, the food is passed down to the stomach, and there it is mixed with the chemical fluid called the gastric juice, a substance which has the peculiar property of making soluble and dissolving out the nutritious matter in the grass, and leaving behind those parts which are not nutritious; so that you have, first, the mill, then a sort of chemical digester; and then the food, thus partially dissolved, is carried back by the muscular contractions of the int

y is it a machine which feeds and appropriates to its own support the nourishment necessary to its existence--it is an engine for locomotive purposes. The horse desires to go from one place to another; and to enable it to do this, it has those strong contractile bundles of muscles attached to the bones of its limbs, which are put in motion by means of a sort of telegraphic apparatus formed by the brain and the great spinal cord running through the spine or backbone; and to this spinal cord are attached a number of fibres termed nerves, which proceed to all part

erties whatever; it absorbs into its own substance water, an inorganic body; it draws into its substance carbonic acid, an inorganic matter; and ammonia, another inorganic matter, found in the air; and then, by some wonderful chemical process, the details of which chemists do not yet understand, though they are near foreshadowing them, it combines them into one substance, which is known to us as "Protein," a complex compound of carbon, hydrogen, oxygen, and nitrogen, which alone po

oses its vigour, and after passing through the curious series of changes comprised in its formation and preservation, it finally decays, and ends its life by going back into that inorganic world from which all but an inappreciable fraction of its substance was derived. Its bones become mere carbonate and ph

elf dies, and its whole body is decomposed and returned into the inorganic world. There is thus a constant circulation from one to the other, a continual formation of organic life from inorganic matters, and as constant a return of the matter of living bodie

the same forces of cohesion which combines together the particles of matter composing this piece of chalk? What is there in the muscular contractile power of the animal but the force which is expressible, and which is in a certain sense convertible, into the force of gravity which it overcomes? Or, if you go to more hidden processes, in what does the process of digestion differ from those processes which are carried on in the laboratory of the chemist? Even if we take the most recondite and most complex operations of animal life--those of the nervous system, these of late years have been shown to be--I do not say identical in any sense with the electrical processes--but this has been shown, that they are in some way or other associated with them; that is to say, that every amount of nervous action is accompanied by a certain amount of electrical disturbance in the particles of the nerves in which that nervous action is carried on. In this way the

g. At stated times the mare, from a particular part of the interior of her body, called the ovary, gets rid of a minute particle of matter comparable in all essential respects with that which we called a cell a little while since, which cell contains a kind of nucleus in its centre, surrounded by a clear space and by a viscid mass of protein substance (Fig. 2); and though it is different in appearance from the eggs which we are mostly acquainted with, it is really an egg. After a time this minute particle of matter, which may only be a small fraction of a grain in weight, undergoes a series of changes,--wonderful, complex changes. Finally, upon

a time when the embryos of neither dog, nor horse, nor porpoise, nor monkey, nor man, can be distinguished by any essential feature one from the other; there is a time when they each and all of them resemble this one of the dog. But as development advances, all the parts acquire their speciality, till at length you have the embryo converted into the form of the parent from which it started. So that you see, this living animal, this horse, begins its existence as a minute particle of nitrogenous matter, which, be

every one in exactly the same terms as those which I have now used; the difference between the highest and the lowest being simply in the comple

ic matters I have named, adds enormously to its bulk, and we can see it, year after year, extending itself upward and downward, attracting and appropriating to itself inorganic materials, which it vivifies, and eventually, as it

ld, which you can understand and comprehend, so long as you con

wild state, and before the discovery of America, when the natural state of things was interfered with by the Spaniards, the horse was only to be found in parts of the earth which are known to geographers as the Old World; that is to say, you might meet with horses in Europe, Asia,

n yeomen farmers, conveyed horses to these countries for their own use, they were found to thrive well and multiply very rapidly; and many are even now running wild in those countries, and in a perfectly natural condition. Now, suppose we were to do for every animal what we have here done for the horse,--

very much no other member of the animal kingdom, except perhaps the zebra or the ass. But let me ask you to look along these diagrams. Here is the skeleton of the horse, and here the skeleton of the dog. You will notice that we have in the horse a skull, a backbone and ribs, shoulder-blades and haunch-bones. In the fore-limb, one upper arm-bone, two fore arm-bones, wrist-bones (wrongly called knee), and middle hand-bones, en

turn him round, so as to put his backbone in a position inclined obliquely upwards and forwards, just as in the next three diagrams, which represent the skeletons of an orang, a chimpanzee, and a gorilla, and you find you have no trouble in identifying the bones throughout; and lastly turn to the end of the series, the diagram representing a man's skeleton, and still you find no great structural feature essentially altered. There are the same bones in the same relations. From the horse we pass on and on, with gradual steps until we arrive at l

orearm, in this large pectoral fin--carrying your mind's eye onward from the flapper of the porpoise. And here you have the hinder limbs restored in the shape of these ventral fins. If I were to make a transverse section of this, I should find just the same organs that we have before noticed. So that, you see, there comes out this strange conclusion as t

without seeing what I have been driving at all through, which is, to show you that, step by step, naturalists have come to the

, which we term Annulosa. In these I could not point out to you the parts that correspond with those of the horse,--the backbone, for instance,--as they are constructed upon a very different principle, which is also common

esemble one another in the same way, but differ from both Vertebrata and Annulosa; and the li

ot more than the latter number--and perhaps it is simpler to assume five--distinct plans or constructions in the whole of the animal world; and that th

the centre of it. Furthermore, the earlier changes of each are substantially the same. And it is in this that lies that true "unity of organisation" of the animal kingdom which has been guessed at and fancied for many years; but which it has been left to the present time to be demonstrated by the careful study of development. But is it possible to go another step further still, and to show that in the same way the whole of the organic world is reducible to one primitive condition of form? Is there among the plants the same primitive form of organisation, and is that identical with that of the animal kingdom? The reply to

ed nature, until we found that each species took its origin in a form similar to that under which all the others commenced their existence. We have found the whole of the vast array of living forms with which we are surrounded, constantly growing, increasing, decaying and disappearing; the animal constantly attracting, modifying, and applying to its sustenance the matter of the vegetable kingdom, which derived its support from the absorption and conversion of inorg

ion of organic nature which I can lay before you: it gives you the gre

o go back into the past, and to sketch in the same broa

Claim Your Bonus at the APP

Open