icon 0
icon TOP UP
rightIcon
icon Reading History
rightIcon
icon Log out
rightIcon
icon Get the APP
rightIcon
The Story of Germ Life

The Story of Germ Life

Author: H. W. Conn
icon

Chapter 1 BACTERIA AS PLANTS.

Word Count: 7155    |    Released on: 29/11/2017

terms bacteria and yeasts.] has developed with a marvellous rapidity. At the beginning of the ninth decade of the century bacteria were scarcely heard of outside of scientific circles, and very

y is not due to any importance bacteria have as plants or as members of the vegetable kingdom, but solely to their powers of producing profound changes in Nature. There is no one family of plants that begins to compare with them in importance. It is the object of this work to point out briefly how much both of good and ill we owe to the life and growth of these microscopic organisms. As we have learned more and more of them during the last fi

TOR

tering many exclamations of astonishment at the wonders of Nature. A few men of more strictly scientific natures paid some attention to these little organisms. Among them we should perhaps mention Von Gleichen, Muller, Spallanzani, and Needham. Each of these, as well as others, made some contributions to our knowledge of microscopical life, and among other organisms studied those which we now call bacteria. Speculations were even made at these early dates of the possible causal connection of these organisms with diseases, and for a little the medical profession was interested in the suggestion. It was impossible then, however, to obtain any evidence for the truth of this speculation,

ions as to the relation of microscopic organisms to various processes of fermentation and decay-conclusions which, although not accepted at the time, have subsequently proved to be correct. It is true that Fuchs made a careful study of the infection of "blue milk," reaching the correct conclusion that the infection was caused by a microscopic organism which he discovered and carefully studied. It is true that Henle made a general theory as to the relation of such organisms to diseases, and pointed out the logically necessary steps in a demonstration of the causal connection between any organism and a disease. It is true also that a general theory of the production of ail kinds of fermentation by living organisms had been advanced. But all these suggestions made little impression. On the one hand, bacteria were not recognised as a class of organisms by themselves-were not, indeed, distinguished from yeasts or other minute animalcuise. Their variety was not mistrusted and their significance not conceived. As microscopic organisms, there were no reasons for considering them of any more importance than any other small animals or plants, and their extreme minuteness and simplicity made them of little interest to the microscopist. On the other hand, their causal connection with fermentative and putrefactive proc

Pasteur who first proved that such a common phenomenon as. the souring of milk was produced by microscopic organisms growing in the milk. It was Pasteur who first succeeded in demonstrating that certain species of microscopic organisms are the cause of certain diseases, and in suggesting successful methods of avoiding them. All these discoveries were made in rapid succession. Within ten years of the time that his name began to be heard in this connection by scientists, the subject had advanced so rapidly that it had become evident that here was a new subject of importance to the scientific world, if not to the

9, since which date the term bacteria, as applying to this special group of organisms, has been coming more and more into use. So difficult were the investigations, that for years there were hardly any investigators besides Pasteur who could successfully handle the subject and reach conclusions which could stand the test of time. For the next thirty years, although investigators and investigations continued to increase, we can find little besides dispute and confusion along this line. The difficulty of obtaining for experiment any one kind of bacteria by itself, unm

re uniform and simple. It was now possible to take steps which had the stamp of accuracy upon them, and which further experiment did not disprove. From the time when these methods were thus made manageable the study of bacteria increased with a rapidity which has been fairly startling, and the information which has accumulated is almost formidable. The very rapidity with which the investigations have progressed has brought considerable confusion, from the fact t

RE BAC

ugh to the scientist, but to him alone. Still, it is impossible to attempt to study the powers of bacteria without knowing something of the organisms themselves. To understand how they come to pla

OF BA

ead pencils, and corkscrews. Spheres, rods, and spirals represent all shapes. The spheres may be large or small, and may group themselves in various ways; the rods may be long or short, thick or s

o 0.00006 inches). The rods may be no more than 0.3 u in diameter, or may be as wide as 1.5 u to 2.5 u, and in length vary all the way from a length scarcely longer th

l elongates and then divides in the middle into two similar halves, each of which then repeats the process. This method of multiplication by simple division is the distin

but remain attached. Each, however, again elongates and divides again, but all still remain attached. There are thus formed long chains of spheres like strings of beads, called Streptococci (Fig. 4). Other species divide first in one direction, then at right angles to the first division, and a third division follows at right angles to the plane of the first two, thus producing solid groups of fours, eights, or sixteens (Fig 5), cal

form long chains. Sometimes they appear to continue to increase in length without showing any signs of division, and in this way long threads are formed (Fig. 7). These threads are, however, potentially at least, long chains of short rods, and under proper conditions they will break up into such short rods, as shown in

OF MULTIP

sult in the course of twenty-four hours at this rate is of course easily computed. In one day each bacterium would produce over 16,500,000 descendants, and in two days about 281,500,000,000. It has been further calculated that these 281,500,000,000 would form about a solid pint of bacteria and weigh about a pound. At the end of the third day the total descendants would amount to 47,000,000,000,000, and would weigh about 16,000,000 pounds. Of course these numbers have no signifi

other plants. Not being obliged to make their own foods like most plants, nor to search for it like animals, but living in its midst, their rapidity of growth and multiplication is limited only by their power to seize and assimilate this food. As they grow in such masses of food, they cause certain chemical changes to take place in it, changes doubtless directly connected with their use of the material as food. Recognisin

EEN DIFFERENT SP

, almost as if cut square across, while in other species they are more rounded and occasionally slightly tapering. Sometimes they are surrounded by a thin layer of some gelatino

with gelatine, the different species have different methods of spreading from their central point of origin. A single bacterium in the midst of such a stiffened mass will feed upon it and produce descendants rapidly; but these descendants, not being able to move through the gelatine, will remain clustered together in a mass, which the bacteriologist calls a colony. But their method of clustering, due to diff

FORM

by means of spores. Spores are special rounded or oval bits of bacteria protoplasm capable of resisting adv

may form in the middle or at the ends of the rods (Fig. 12). They may use up all the protoplasm of the rod in their formation, or they may use only a small part of it, the rod which forms them continuing its activities in spite of the formation of the spores within it. They are always clear and highly refractive from containing little water, and they do not so readily absorb staining material as the ordinary rods. They appear to be covered with a laye

pen among the spherical forms, which only in rare instances form endogenous spores. Among the spheres which form a chain of streptococci some may occasionally be slightly different from the rest. They are a little larger, and have been thought to have an increased resisting power like that of true spores (Fig. 13 b). It is quite doubtful, however, whether it is proper to regard these bodies a

the large thread breaks into many minute spherical bodies, which finally find exit. The spores thus formed may not be al

ethod of spore formation is always uniform for any single species. Whatever be the method of the formation of the spore, its purpose in the life of the bacterium is always the same. It serves as a means of keeping the species alive under conditions of adversity. Its power of resisting heat or drying enables it to live wher

TI

m, but have an intimate connection with the protoplasmic content. Their distribution is different in different species of bacteria. Some species have a single flagellum at one end (Fig. 15 a). Others have one at each end (Fig. 15 b). Others, again, have, at least just before div

AL STR

times is of a cellulose nature. Within it is protoplasm which shows various uncertain appearances. Some microscopists have thought they could find a nucleus, and have regarded bacteria as cells with inclosed nucleii (Figs. 10 a and 15 f). Others have regarded the whole bacterium as a nucleus without any protoplasm, while others, again, have concluded that the discerned internal structure is nothing except an appearance presented by the physical arrangement of the protoplasm. While we may believe that they have some internal structure, we must recognise that as yet microscopists

S OR P

ae, and the similarity of this to some of the thread-like bacteria is decided. The Oscillariae are, however, true plants, and are of a green colour. Bacteria are therefore to- day looked upon as a low type of plant which has no chlorophyll, [Footnote: Chlorophyll is the green colouring matter of plants.] but is related to Oscillariae. The absence of the chlorophyll has forced them to adopt new relations to food, and compels them to feed upon complex foods instead of the simple ones, which form the food of green plants. We may have no hesitation, then, in calling them plants. It is interesting to notice that with this idea their place in th

ATION OF

r subdivisions it has been found necessary to fall back upon other characters, such as the shape of the colony produced in solid gelatine, the power to produce disease, or to oxidize nitrites, etc. Thus at present the different species are distinguished rather by their physiological than their morphological characters. This is an unsatisfactory basis of classification, and has produced much confusion in the attempts to classify bacteria. The problem of determining the species of bacteria is to-day a very difficult one, and with our best methods is still unsatisfactorily solved. A few species of marked character are well known, and their powers of action so well understood that they can be readily recognised; but of the great host of bacteria studied, the large majority have been so slightly experimented upon that their characters are not known, and it is impossible, therefore, to distinguish many of them apart. We find that each bacter

ON OF B

nd even to-day we hardly know what the final answer will be. It has been demonstrated beyond peradventure that some species may change their physiological characters. Disease bacteria, for instance, under certain conditions lose their powers of developing disease. Species which sour milk, or others which turn gelatine green, may lose their characters. Now, since it is upon just such physiological characters as these that we must depend in order to separate different species of bacteria from each other, it will be seen that great confusion and uncertainty will result in our attempts to define species. Furthe

rs of the same species may show different properties under different conditions, but it is believed that under identical conditions the properties will be constant. It is no more possible to convert one species into another than it is among the higher orders of plants. It is believed that bacteria do form a group of plants by themselves, and are not to be regarded as stages in the history of higher plants. It is believed that, together with a considerable amount of variability and an occasional somewhat long life history

of great use when the species is a common and well-known one, but of doubtful value for less-known species It frequently happens that a bacteriologist makes a study of the bacteria found in a certain locality, and obtains thus a long list of species hitherto unknown. In these cases it is common simply to number these species rather than name them. This method is frequently advisable, since the bacteriologist can seldom hunt up all bacteriological literature with sufficient accuracy to determine whether some other bacteriologist may not have found the same species in an entirely different locality. One bacteriologist, for e

CTERIA A

re in streams of running water in even greater quantity than in standing water. This is simply because running streams are being constantly supplied with water which has been washing the surface of the country and thus carrying off all surface accumulations. Lakes or reservoirs, however, by standing quiet allow the bacteria to settle to the bottom, and the water thus gets somewhat purified. They are in the air, especially in regions of habitation. Their numbers are greatest near the surface of the ground, and decrease in the upper strata of air. Anything which tends to raise dust increases the number of bacteria in the air greatly, and the dust and emanations from the clothes of people crowded in a close room fill the air with bacteria in very great numbers. They are found in excessive abundance in every bit of decaying matter wherever it may be. Manure heaps, dead bodies of animals, decaying trees, filth and slime and muck everywhere are filled with them, for it is in such

n as it by accident falls upon a place where there is food and moisture it will begin to multiply. Everywhere in Nature, then, exists this group of organisms with its almost inconceivable power of multiplication, but a power held in check by lack of food. Furnish them with food and their potential powers become actual. Such food is provided by the dead bodies of animals or plants, or by animal secretions, or from various other sources. The bacteria whi

Claim Your Bonus at the APP

Open